Dimension of set of all linear maps that map three elements to zero

Mr Davis 97
Messages
1,461
Reaction score
44
Homework Statement
Note that V and W are finite dimensional vector spaces.
I know how to do the similar problem when we're looking at all of the linear maps that map ALL elements to zero (in this case you can use the rank-nullity theorem to get a definite answer on the dimension). But I am not sure how to approach this one. It seems that upperbound is (dim V)(dim W) if all the vectors ##v_1, v_2, v_3## are just the zero vectors. But I am not sure about the lower bound.
Relevant Equations
rank-nullity theorem?
Question.png
 
Physics news on Phys.org
What are a and b?

It might help to consider the simpler case where just ##v_1## goes to zero. If you're still not sure, pick V and W to be like, ##\mathbb{R}^4## and ##\mathbb{R}^3## and let ##v_1=(1,0,0,0)## and try that case.
 
Office_Shredder said:
What are a and b?

It might help to consider the simpler case where just ##v_1## goes to zero.
Sorry, ##a = \operatorname{dim} V## and ##b = \operatorname{dim} W##.

And yeah, I actually did that and I think I was able to solve it in that case. Basically, if we're trying to find the dimension of ##\{ T\in \mathrm{Hom}(V,W) : T(v_1) = 0 \}##, where ##v_1## is nonzero, then if we define the map ##\phi : \mathrm{Hom}(V, W) \to W## where ##\phi (T) = T(v_1)##, we get, using the rank-nullity theorem, and recognizing that the image of ##\phi## is ##W##, that ## \operatorname{dim} (\ker (\phi)) = ab - b ##. If ##v_1## is the zero vector, then we just get that ##\operatorname{dim} (\ker (\phi)) = ab##.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top