Discrete Fourier Transform with different period

vibe3
Messages
39
Reaction score
1
Hi all, I have a seemingly simple problem which is I'd like to efficiently evaluate the following sums:

<br /> Y_k = \sum_{j=0}^{n-1} c_j e^{\frac{i j k \alpha}{n}}<br />

for k=0...n-1. Now if \alpha = 2\pi, then this reduces to a standard DFT and I can use a standard FFT library to compute the sums. But if \alpha \ne 2\pi then I don't see how I can put this into standard DFT form to use a regular FFT library on this.

I guess this problem amounts to computing a DFT with harmonics that do not necessarily have periods of 2 \pi.

Any help is appreciated!
 
Mathematics news on Phys.org
This situation happens all the time when you analyse measured data, because obviously you don't know exactly what frequencies are in the data till AFTER you have measured it and processsed it.

If you do a DFT on the raw data, the result will be hard to understand, because the discontinuity between the two ends of the sample will produce a lot of high frequency Fourier components that don't mean anything physically.

One standard technique is to multiply the data by a "windowing function" which is close to 0 at the ends of the range, and close to 1 in the middle. That gets rid of the meaningless high frequency Fourier components by making the ends of the sample "match up" (both become close to 0), but at the cost of blurring the frequency components you are interested in.

There are several different windowing functions that have been invented, with different tradeoffs between the amount of filtering and the amount of blurring, but if you are new to this I would recommend the Hanning window
http://en.wikipedia.org/wiki/Hann_function Note, there is also a Hamming window - be careful with the spelling!

This might be useful: http://www.tmworld.com/electronics-news/4383713/Windowing-Functions-Improve-FFT-Results-Part-I (and also part 2)

"Real world" signal processing programs like Matlab have these windowing options built in, so you don't have to work out the math yourself.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top