Discretization of diffusion equation of a fluid in movement

In summary: T_f=\frac{h_{f2}T_1+h_{f2}T_2}{2}$$In summary, the equation states that the thermal behaviour of a moving heat transfer fluid is affected by convective exchanges with the walls. The equation can be solved using a second order spatial discretization with decentred schemes at the extremities, but not at the center. This is likely due to the discretization of the mcp term. To correct the problem, the convection term should have a positive sign.
  • #1
DianeLR
7
0
Hello,

I want to model the thermal behaviour of a moving heat transfer fluid in 1D, with convective exchanges with the walls. I have obtained the following equation (1 on the figure). I have performed a second order spatial discretization with decentred schemes at the extremities (y = 0 and H). After spatial discretisation, equations (2 to 4) are obtained.

By scoring these equations in OpenModelica (a software with a DASSL time integrator), I obtain consistent results at the extremities but not at the centre. I think this is due to the discretization, especially the mcp term.

Do you have any idea how to correct this problem?
 

Attachments

  • figure.png
    figure.png
    25.8 KB · Views: 65
Science news on Phys.org
  • #2
In your initial equation, the convection term should have a positive sign, not a negative.

Why did you choose this method to solve this problem? I can be done so much more simply using the method of characteristics.
 
  • #3
Chestermiller said:
In your initial equation, the convection term should have a positive sign, not a negative.

Why did you choose this method to solve this problem? I can be done so much more simply using the method of characteristics.
Should the convection term be positive even if element 2 (at T2) is to the right of the fluid (element 1 to the left)?
I didn't know about the characteristics method... So it's easier for me to use the finite element method.
 
  • #4
DianeLR said:
Should the convection term be positive even if element 2 (at T2) is to the right of the fluid (element 1 to the left)?
I didn't know about the characteristics method... So it's easier for me to use the finite element method.
Yes. Derive it yourself.

You should learn how to apply the method of characteristics to this problem.'

Please write out the PDE.
 
  • #5
Chestermiller said:
Yes. Derive it yourself.

You should learn how to apply the method of characteristics to this problem.'

Please write out the PDE.
Thank you for the correction.

I will look into the method of characteristics to apply it to my problem.

The PDE are written in the figure below.
 

Attachments

  • figure.png
    figure.png
    25.6 KB · Views: 62
  • #6
DianeLR said:
Thank you for the correction.

I will look into the method of characteristics to apply it to my problem.

The PDE are written in the figure below.
So $$\rho C A\left[\frac{\partial T}{\partial t}+v\frac{\partial T}{\partial x}\right]=L(h_{f1}+h_{f2})(T^*-T_f)$$with $$T^*=\frac{h_{f1}T_1+h_{f1}T_2}{(h_{f1}+h_{f2})}$$
 

Similar threads

Replies
5
Views
1K
Replies
13
Views
1K
Replies
7
Views
2K
  • Other Physics Topics
Replies
6
Views
2K
  • Thermodynamics
Replies
2
Views
1K
Replies
18
Views
1K
  • Differential Equations
Replies
1
Views
2K
Replies
5
Views
5K
  • Differential Equations
Replies
7
Views
3K
  • Advanced Physics Homework Help
Replies
5
Views
996
Back
Top