coki2000
- 91
- 0
Hi,
In gravitational force law F=-G\frac{M_{1}M_{2}}{x^{2}}if i want to find the distance function which depends on time then
\frac{d^{2}x}{dt^{2}}=-G\frac{M}{x^2}
\frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=v\frac{dv}{dx}=-G\frac{M}{x^2}
vdv=-G\frac{M}{x^2}dx
integrate the both sides
\frac{v^2}{2}=G\frac{M}{x}\Rightarrow \frac{dx}{dt}=\sqrt{2G\frac{M}{x}}\Rightarrow dt=\sqrt{\frac{x}{2Gm}}dx
if we solve that differential equation then t=\frac{2}{3}\sqrt{\frac{1}{2GM}}x^{3/2}
this time distance function x(t)=\sqrt[3]{\frac{9}{2}GM}.t^{2/3} Is that function right else what is the right formula? Please help me
In gravitational force law F=-G\frac{M_{1}M_{2}}{x^{2}}if i want to find the distance function which depends on time then
\frac{d^{2}x}{dt^{2}}=-G\frac{M}{x^2}
\frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=v\frac{dv}{dx}=-G\frac{M}{x^2}
vdv=-G\frac{M}{x^2}dx
integrate the both sides
\frac{v^2}{2}=G\frac{M}{x}\Rightarrow \frac{dx}{dt}=\sqrt{2G\frac{M}{x}}\Rightarrow dt=\sqrt{\frac{x}{2Gm}}dx
if we solve that differential equation then t=\frac{2}{3}\sqrt{\frac{1}{2GM}}x^{3/2}
this time distance function x(t)=\sqrt[3]{\frac{9}{2}GM}.t^{2/3} Is that function right else what is the right formula? Please help me
Last edited: