Distance rolled of sphere vs cylinder with same m, r, and v

AI Thread Summary
The discussion centers on the energy conservation equations for a cylinder and a sphere rolling to different heights. The initial equations suggest that the cylinder reaches a height of h_cyl = v^2/g and the sphere h_sph = 5v^2/6g. There is confusion regarding the initial velocity and the resulting heights, with claims that the calculated height difference of 0.43 m is incorrect. Participants clarify that the initial velocity is not necessary for the question, and the correct height for the sphere should be 0.83 m. The conversation also touches on the moment of inertia for a hollow sphere, indicating a need for further clarification on that topic.
I_Try_Math
Messages
114
Reaction score
22
Homework Statement
A hollow cylinder that is rolling without slipping is given a velocity of 5.0 m/s and rolls up an incline to a vertical height of 1.0 m. If a hollow sphere of the same mass and radius is given the same initial velocity, how high vertically does it roll up the incline?
Relevant Equations
## K_T = \frac{1}{2}mv^2 ##
## K_R = \frac{1}{2}Iw^2 ##
The answer from the textbook is:
Use energy conservation
## \frac{1}{2}mv^2 + \frac{1}{2}I_{cyl}w^2 = mgh_{cyl} ##
## \frac{1}{2}mv^2 + \frac{1}{2}I_{sph}w^2 = mgh_{sph} ##

Subtracting the two equations, eliminating the initial translational energy, we have:

## h_{cyl} = \frac{v^2}{g} ##
## h_{sph} = \frac{5v^2}{6g} ##

## h_{cyl} - h_{sph} = 0.43 ## m

Thus, the hollow sphere, with the smaller moment of inertia, rolls up to a lower height of ## 1 - 0.43 = 0.57 ## m.

I'm having trouble understanding the answer. If ## h_{cyl} = \frac{v^2}{g} ##, then doesn't the cylinder reach a vertical height of 2.55 m? Which would be a contradiction of the original premise of the question (that the cylinder rolls to a vertical height of 1 m)?
 
Physics news on Phys.org
I_Try_Math said:
Subtracting the two equations, eliminating the initial translational energy, we have:

## h_{cyl} = \frac{v^2}{g} ##
## h_{sph} = \frac{5v^2}{6g} ##
I don't see how that would be a useful step to take, nor how it could produce those equations. You need to cancel all the initial energy.
 
You are correct.
The question does not need to specify the initial velocity. It only needs to say that the sphere is given the same velocity. Given the height to which it rolls, we can infer the initial velocity, and we would infer a smaller velocity than 5 m/s.
The question should not have stated the initial velocity. The author probably didn't notice they'd used an incorrect velocity because the number is not used anywhere in the calc, so a wrong number can't make it go wrong.
However your calc of 0.43m is wrong. Look at the two equations above that, substitute 1m for ##h_{cyl}## and redo the calc. The difference in heights is much less than 0.43.
And as haruspex has just pointed out your two equations cannot be derived by the step you describe (although they can be derived from other, different steps).
 
andrewkirk said:
You are correct.
The question does not need to specify the initial velocity. It only needs to say that the sphere is given the same velocity. Given the height to which it rolls, we can infer the initial velocity, and we would infer a smaller velocity than 5 m/s.
The question should not have stated the initial velocity. The author probably didn't notice they'd used an incorrect velocity because the number is not used anywhere in the calc, so a wrong number can't make it go wrong.
However your calc of 0.43m is wrong. Look at the two equations above that, substitute 1m for ##h_{cyl}## and redo the calc. The difference in heights is much less than 0.43.
And as haruspex has just pointed out your two equations cannot be derived by the step you describe (although they can be derived from other, different steps).
Thank you for that explanation. So if I understand correctly, the answer should be that the sphere rolls 0.83 m.
 
I_Try_Math said:
Thank you for that explanation. So if I understand correctly, the answer should be that the sphere rolls 0.83 m.
Yes.
Wrt the 5.0m/s, maybe this is not on Earth.
 
What is the equation for the moment of inertial of a hollow sphere in terms of its mass, thickness, and outer radius?
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top