Calculating Divergence of a Gradient in Cartesian Coordinates

Click For Summary
SUMMARY

The discussion centers on calculating the divergence of a gradient in Cartesian coordinates, specifically addressing the equation \(\nabla^2\left(\frac{1}{r}\right)=0\). Participants clarify that the divergence of a gradient is indeed a Laplacian, and emphasize the importance of correctly defining the unit vector \(\hat{r}\) as \(\hat{r}=\frac{x}{r}\hat{i} + \frac{y}{r}\hat{j} + \frac{z}{r}\hat{k}\). Misinterpretations of vector notation and the need for precise mathematical definitions are highlighted, particularly regarding the expression \(\frac{1}{\vec{r}}\).

PREREQUISITES
  • Understanding of vector calculus, specifically divergence and gradient operations.
  • Familiarity with Cartesian coordinates and their representation in vector form.
  • Knowledge of Laplacian operators and their applications in physics.
  • Ability to manipulate mathematical expressions involving partial derivatives.
NEXT STEPS
  • Study the properties of the Laplacian operator in different coordinate systems, including spherical coordinates.
  • Learn about the physical interpretations of divergence and gradient in vector fields.
  • Explore advanced vector calculus topics, such as Stokes' theorem and Green's theorem.
  • Practice solving problems involving the divergence of vector fields in both Cartesian and spherical coordinates.
USEFUL FOR

Students and professionals in physics, mathematics, and engineering who are focused on vector calculus, particularly those dealing with electromagnetic theory and fluid dynamics.

NewtonApple
Messages
45
Reaction score
0

Homework Statement


image024.gif

Homework Equations



The Attempt at a Solution


(a)[/B] Divergence of a gradient is a Laplacian.

(b) I suppose to do it in Cartesian coordinates.

Let \nabla=\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}

and \overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}, \mid r\mid=\sqrt{x^{2}+y^{2}+z^{2}},

\hat{r}=\hat{i}+\hat{j}+\hat{k}

First calculate \nabla\left(\frac{1}{\overrightarrow{r}}\right)=\nabla\left(\frac{1}{\mid r\mid\hat{r}}\right)=\nabla\left(\frac{1}{\mid r\mid}\hat{r}\right)=\left[\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}\right]\left[\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\right]

= \hat{i}\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-1}{2}}+\hat{j}\frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-1}{2}}+\hat{k}\frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-1}{2}}

Am I doing it the right way?

PS. cross posted at
https://www.physicsforums.com/threads/laplacian-of-a-vector.789514/#post-4959007
 
Physics news on Phys.org
NewtonApple said:

Homework Statement


View attachment 77030

Homework Equations



The Attempt at a Solution


(a)[/B] Divergence of a gradient is a Laplacian.

(b) I suppose to do it in Cartesian coordinates.

Let \nabla=\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}

and \overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}, \mid r\mid=\sqrt{x^{2}+y^{2}+z^{2}},

\hat{r}=\hat{i}+\hat{j}+\hat{k}

First calculate \nabla\left(\frac{1}{\overrightarrow{r}}\right)=\nabla\left(\frac{1}{\mid r\mid\hat{r}}\right)=\nabla\left(\frac{1}{\mid r\mid}\hat{r}\right)=\left[\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}\right]\left[\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\right]

= \hat{i}\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-1}{2}}+\hat{j}\frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-1}{2}}+\hat{k}\frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{-1}{2}}

Am I doing it the right way?

PS. cross posted at
https://www.physicsforums.com/threads/laplacian-of-a-vector.789514/#post-4959007

No. ##\hat{r}## is a vector, so ##\nabla(\hat{r}/r)## does not make sense: you need to take the gradient of a scalar, not of a vector. Anyway, why do you define ##\hat{r}=\hat{i}+\hat{j}+\hat{k}##? I cannot see its relation to anything in the problem. If by ##\hat{r}## you mean the unit vector in the direction of ##\vec{r}##, then that is most certainly not equal to what you wrote.

Also, never, never write something like ##\frac{1}{|r|\hat{r}}## because that is meaningless: it is a fraction of the form 1/vector, and those things do not exist in any usual form.
 
Dear Isaac,

If you yourself write ##\vec r = \hat {\bf r} | {\bf r}|## you really should go back to ##\vec {r}=x\hat{i}+y\hat{j}+z\hat{k}, \mid r\mid=\sqrt{x^{2}+y^{2}+z^{2}}## and correct the hideous ##\hat{r}=\hat{\imath}+\hat{\jmath}+\hat{k}## to ##\hat{r}={x\over \sqrt{x^{2}+y^{2}+z^{2}}} \hat{\imath} + {y\over \sqrt{x^{2}+y^{2}+z^{2}}}\hat{\jmath} + {z\over \sqrt{x^{2}+y^{2}+z^{2}}}\hat{k}##

[edit] sorry, pressed wrong button.

But, as Ray (And TSny) indicate, you don't need ##\hat r##

In your defence: The original problem formulation is confusing because it uses a boldface r in the 1/r. Many of us are conditioned to see that as a vector.
 
BvU said:
Dear Isaac,

If you yourself write ##\vec r = \hat {\bf r} | {\bf r}|## you really should go back to ##\vec {r}=x\hat{i}+y\hat{j}+z\hat{k}, \mid r\mid=\sqrt{x^{2}+y^{2}+z^{2}}## and correct the hideous ##\hat{r}=\hat{\imath}+\hat{\jmath}+\hat{k}## to ##\hat{r}={x\over \sqrt{x^{2}+y^{2}+z^{2}}} \hat{\imath} + {y\over \sqrt{x^{2}+y^{2}+z^{2}}}\hat{\jmath} + {z\over \sqrt{x^{2}+y^{2}+z^{2}}}\hat{k}##

[edit] sorry, pressed wrong button.

But, as Ray (And TSny) indicate, you don't need ##\hat r##

In your defence: The original problem formulation is confusing because it uses a boldface r in the 1/r. Many of us are conditioned to see that as a vector.

Dear BvU, I think Author referred it as a vector. In the book (Mathematical Methods for Physicists by Tai L. Chow) scalars are mentioned as non bold, such as in same exercise page other problems are

image004.gif

image020.gif
 
I count it as a misprint. What could possibly be the interpretation of ##1/\;\vec {\bf r}## ?
 
Ok, thanks for the input.

Homework Statement



Show that \nabla^{2}\left(\frac{1}{r}\right)=0

Homework Equations



Let \nabla=\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}

and \overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}, \mid r\mid=\sqrt{x^{2}+y^{2}+z^{2}}

The Attempt at a Solution



\nabla\left(\frac{1}{r}\right)=\nabla\left(\frac{1}{\mid r\mid}\right)=\left[\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}\right]\left[\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right]

\nabla\left(\frac{1}{r}\right)= \hat{i}\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{j}\frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{k}\frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}

\nabla\left(\frac{1}{r}\right)=-\hat{i}\frac{2x}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-\hat{j}\frac{2y}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-\hat{k}\frac{2z}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}

\nabla.\nabla\left(\frac{1}{r}\right)=\left(\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}\right).\left(-\hat{i}x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-\hat{j}y\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-\hat{k}z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}\right)

\nabla^{2}\left(\frac{1}{r}\right)=\frac{\partial}{\partial x}\left(-x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}\right)+\frac{\partial}{\partial y}\left(-y\left(x^{2}+y^{2}+z^{2}\right)\right)+\frac{\partial}{\partial z}-\left(z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}\right)

\nabla^{2}\left(\frac{1}{r}\right)=-x\left(2x\right)\left(-\frac{3}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}-\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-y\left(2y\right)\left(-\frac{3}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}
- \left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-z\left(2z\right)\left(-\frac{3}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}-\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}

\nabla^{2}\left(\frac{1}{r}\right)=3x^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}-\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}+3y^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}-\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}
+3z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}-\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}

\nabla^{2}\left(\frac{1}{r}\right)=3\left(x^{2}+y^{2}+z^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}-3\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}

\nabla^{2}\left(\frac{1}{r}\right)=3\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}+1}-3\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}

\nabla^{2}\left(\frac{1}{r}\right)=3\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-3\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}\nabla^{2}\left(\frac{1}{r}\right)=0

Hence Showed
 
Last edited:
Yes, but we've to it in both - Cartesian and Spherical coordinates.
 
NewtonApple said:
Yes, but we've to it in both - Cartesian and Spherical coordinates.

^ solve it
 
  • #10
image024.gif


Solving part (c). As suggested above it's also a misprint. It should be
\overrightarrow{r}.\left(\nabla.\overrightarrow{r}\right)\neq\left(r\nabla\right)r
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
Replies
20
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K