Do Gravitons Themselves Carry Gravity in Quantum Physics?

  • Thread starter Thread starter nabodit
  • Start date Start date
  • Tags Tags
    Gravitons Gravity
nabodit
Messages
16
Reaction score
0
hi
i'm in a dielema.
i don't know if it is the right place to post the thread.
if every particle is destined by the universe to have some gravitionrl force then does graviton itself have gravity. there is no point of it not having if it is a particle as treaded by quantum physics
nabodit
 
Physics news on Phys.org
Hi nabodit, and (in case no one has welcomed you before), Welcome to Physics Forums!

This is a double post, as you say, and not in line with our guidelines.

I'm locking this thread; please continue discussions here.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Back
Top