A Do Moving Masses Slow Down Due to Gravitational Waves?

Cato
Messages
56
Reaction score
10
TL;DR Summary
Gravitational waves are produced by accelerating masses. Since all space is curved -- more curved near large masses stars, less curved in intergalactic space -- all moving masses are being accelerated to some degree. Do all moving masses therefore produce gravitational waves? If they do, will all moving masses lose energy and slow down?
Gravitational waves are produced by accelerating masses. Since all space is curved -- more curved near large masses stars, less curved in intergalactic space -- all moving masses are being accelerated to some degree. Do all moving masses therefore produce gravitational waves? If they do, will all moving masses lose energy and slow down?
 
Physics news on Phys.org
Technically, yes, gravity waves are produced but they are so weak in the kind of situation that you describe that their effect is probably something like a rounding error in the 15th decimal place.
 
Last edited:
Objects in free fall aren't accelerating in any meaningful sense. The source of gravitational radiation is stress-energy with a changing quadropole moment.

That does mean that any pair of objects ought to emit gravitational radiation unless they are at rest with respect to one another (I think - there might be exceptions). And that does mean that they'll slow down with respect to one another, but that may or may not mean slow down with respect to whatever coordinate system you are using.

Back-of-the-envelope, the kinetic energy of Earth in its orbit is 1031J. The power output from gravitational radiation is around 100W, if memory serves. So I think that this effect is rather weaker even than @phinds says - even for a system as massive as our planet.

Finally, extending this argument to "every object" is risky. We strongly suspect that GR is not an accurate description of gravity when quantum effects are important for its source. So gravitational radiation may or may not be emitted by very small objects.
 
Last edited:
  • Like
Likes phinds
Ibix said:
That does mean that any pair of objects ought to emit gravitational radiation unless they are at rest with respect to one another (I think - there might be exceptions). And that does mean that they'll slow down with respect to one another, but that may or may not mean slow down with respect to whatever coordinate system you are using.
Looking at the the merger of two compact objects I think they speed up independent of the chosen coordinate system. Or do you think of non-inertial frames here?
 
Last edited:
timmdeeg said:
speed up independent of the chosen coordinate system.
Can “speed up” ever have a coordinate-independent meaning? “Experiences proper acceleration” has a coordinate-independent meaning and in an inertial frame does imply what most people would mean by “speed up”... but we’re talking gravitational effects here, so are considering regions of spacetime that aren’t properly described by any inertial frame.
 
I don't know this kind of physics enough to discuss the details. "Finally, extending this argument to "every object" is risky. We strongly suspect that GR is not an accurate description of gravity when quantum effects are important for its source. So gravitational radiation may or may not be emitted by very small objects." So perhaps objects where quantum effects are important don't produce gravitational waves. Thanks for all your answers.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top