Does a single photon have a wavelength?

  • Thread starter Thread starter feynmann
  • Start date Start date
  • Tags Tags
    Photon Wavelength
feynmann
Messages
156
Reaction score
1
If a single photon has a wavelength, would it violate Heisenberg Uncertainty principle?
Since photon is a particle, that means it can be represented by a wave packet. But wave packet can not have definite wavelength, only pure wave can have wavelength
 
  • Like
Likes backward
Physics news on Phys.org
One form of the uncertainty principle is that the uncertainty in momentum (delta p) multiplied by the uncertainty in position (delta x) is greater than some minimum number. A single photon with a definite wavelength (uncertainty zero) is one limiting case. With definite wavelength, you know it has a definite momentum. The uncertainty principle implies that you have infinite uncertainty in the position. Consider that a single wave stretches across infinite space. So you can't define a position for an infinite wave. In order to try and make the wave start to have a shape at some position, you have to add other wavelengths. So the uncertainty in momentum starts to go up while the uncertainty in the position starts to come down. At the other end of this that you have to add an infinite number of wavelength together in order to put the wave packet at a single location. So you now have definite (zero uncertainty) position but infinite uncertainty in the momentum.
 
I have diffracted monoenergetic photons through a Bragg diffraction crystal with an angular resolution of a few seconds of arc at a very low counting rate. every photon had the same wavelength within about 1 part in 1000.
 
No one can answer this question correctly.

For example, when you accelerate one electron to the definite momentum,
the electron can jump to the point at infinity.

It is a ridiculous thing of the uncertainty principle.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top