Does atmospheric pressure affect the saturated vapor pressure ?

AI Thread Summary
The discussion explores the impact of atmospheric pressure on the saturated vapor pressure of water, particularly in common environments like lakes or glasses of water. It highlights that while the Clausius-Clapeyron equation typically assumes only water vapor is present, atmospheric gases exert significantly higher pressure on the liquid surface. This raises questions about whether this pressure influences the saturation vapor pressure, with suggestions that any correction may be minimal due to the low additional pressure. The conversation also notes the difference in how pressure is treated in liquid-gas versus solid-liquid equilibrium within the context of the equation. Overall, the interaction between atmospheric gases and water vapor remains a complex topic requiring further exploration.
Jano L.
Gold Member
Messages
1,330
Reaction score
75
When the Clausius-Clapeyron equation for saturation vapor pressure over liquid water is derived via the Carnot cycle, it is usually assumed that there is only gaseous water above the liquid. The other atmospheric gases are neglected.

However, in common settings (lake, glass of water...), the atmospheric gases exert much higher pressure on the liquid surface than the water vapor. Does this large pressure affect the saturation vapor pressure somehow? I guess that the correction is small, perhaps since the additional atmospheric pressure is too low to change the volume of liquid water significantly...
 
Physics news on Phys.org
For ideal gases, I think there should be no change.
Gases are not ideal, of course - they need some volume (reducing the volume available for water a bit), they have some interaction (I guess this gives a bit more water, but I don't know). In real air, you also have dust particles and so on.
 
Yes, that is similar to what I was thinking.

On the other hand, when applied to solid-liquid equilibrium, the "p" in the C-C equation refers to total liquid pressure. It is a bit strange that for liquid-gas equilibrium, the "p" in the C-C equation refers to partial pressure of the vapor, not to the total liquid pressure.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top