Does BE condensate release or abort energies?

  • Thread starter Thread starter garyfang
  • Start date Start date
  • Tags Tags
    Energies Release
garyfang
Messages
3
Reaction score
0
When a system of particles condensates, are energy released or aborted?
Is energy required to condensate a bunch of particles? In one example, if you were to shrink the volume these particles should occupy by exerting pressure to the container, energy is required. Where do these energies go when materials become condensated?
 
Physics news on Phys.org
To create a Bose-Einstein condensate, you have to cool the material - the energy goes into photons (laser cooling), hot evaporating atoms (evaporative cooling), potential energy or other things.
I don't think I get the main question of your post.
 
garyfang said:
When a system of particles condensates, are energy released or aborted?
Is energy required to condensate a bunch of particles? In one example, if you were to shrink the volume these particles should occupy by exerting pressure to the container, energy is required. Where do these energies go when materials become condensated?

I think you are asking about condensing a system of particles. I think the conservation of energy rule gives you your answer: The initial energy of the system of particles, plus the energy you put into the system of particles by condensing it, will result in the final (larger) energy of the system compared to its initial energy.

Jake
 
jaketodd said:
I think you are asking about condensing a system of particles. I think the conservation of energy rule gives you your answer: The initial energy of the system of particles, plus the energy you put into the system of particles by condensing it, will result in the final (larger) energy of the system compared to its initial energy.

Jake

You do not put energy into the system by condensing it.
Consider a system of noninteracting bosons. The condensation means that the ground state becomes macroscopically occupied. In the limit of full condensation, the ground state is fully occupied. As this is also the lowest energy state of the whole system, energy is released during condensation.
 
DrDu said:
You do not put energy into the system by condensing it.
Consider a system of noninteracting bosons. The condensation means that the ground state becomes macroscopically occupied. In the limit of full condensation, the ground state is fully occupied. As this is also the lowest energy state of the whole system, energy is released during condensation.

You're probably right, but I was thinking of the energy you put into confining the particles would add kinetic energy as the walls close in, so to speak.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top