I'm working on a problem for my analysis class. Here it is:(adsbygoogle = window.adsbygoogle || []).push({});

Let f be differentiable on an open subset S of R. Suppose there exists M > 0 such that for all x in S, |f'(x)| ≤ M, i.e. the derivative is bounded. Show that f is uniformly continuous on S.

I'm not too sure that this question is correct though, as I think I have a counterexample. Let S be the union of (-1,0) and (0, 1), then clearly S is open. Define f(x) = |x| / x for x in S.

Then if x < 0, f(x) = -1, and if x > 0, f(x) = 1.

f'(x) = 0 at every x in S, since 0 is not in S, so f is differentiable on S and the derivative is bounded.

And now f is not uniformly continuous on S, since if we set ε= 1, let δ be arbitrary, and pick x,y close to 0 such that x<0, y>0, and |x - y| < δ, it does not follow that |f(x) - f(y)| < ε. So no δ will work for this ε.

I'd really appreciate any feedback on my reasoning. Thanks for your time!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Does bounded derivative always imply uniform continuity?

**Physics Forums | Science Articles, Homework Help, Discussion**