Does gravity affect a magnetic/electric field?

Click For Summary
Gravity influences electromagnetic radiation, as evidenced by light bending in gravitational fields, indicating a deeper connection between gravity and electromagnetic fields. In general relativity (GR), gravity is described as the curvature of space-time, which affects how electromagnetic radiation behaves. Observational phenomena such as redshift and blueshift occur due to gravitational effects on time, rather than a direct interaction between gravity and electromagnetic fields. While electromagnetic fields and gravity do interact, GR emphasizes that gravity shapes the geometry of space, dictating the trajectories of objects and the passage of time. Understanding this relationship requires a grasp of concepts like the energy-momentum tensor and Maxwell's equations in curved spacetime.
PWiz
Messages
695
Reaction score
117
Since light, a form of electromagnetic radiation, gets bent in a gravitational field even though it does not have any rest mass, it is obvious gravity is a force that does much more than just attract two masses towards each other. Since it affects electromagnetic radiation, it has led me to ask: does gravity(or a particularly strong gravitational field) have an affect on an electric/magnetic field or vice versa? There seems to be some connection here.
P.S. I haven't started with GR yet, so please don't expect me to follow a very advanced conceptual understanding of the theory.
 
Physics news on Phys.org
It is only in Newtonian gravity that the source of gravitation is exclusively masses. Once you go to GR, the source of gravity (really, of space-time curvature) is the energy-momentum tensor - an object that contains both masses and momenta of the contents of the space-time. There is also some feedback, space-time provides the setting for how electromagnetism behaves, so yes, to some extent electromagnetic fields and gravity do interact.
 
If you want to work on the effect of gravity on the EM fields then you probably need to start here:
http://en.wikipedia.org/wiki/Maxwell's_equations_in_curved_spacetime
where the difference appears in the ##g_{\mu\nu}## which represents the metric and ##g## which is its determinant.

Sorry that I don't know a gentler answer to the question.
 
All forms of electromagnetic radiation (EMR) "seems" to interact with gravitational fields, even radio waves are bended by gravitation. As general relativity (GR) does not include forces in its description, what determine what will happens with the EMR in GR? The space curvature. If a beam is collinear with the "force lines" of the curvature, per example, as when a light ray goes against the gravitational field of a massive body, we will have a red shift. (This is not the cosmological red shift caused by the expanding universe). If the light ray is going to a massive body, then it will be a blue shift. (These are observational results). This is interpreted by Einstein as the effect of gravitation on clocks. And the red shift and blue shift are seeing as a result of time accelerating or reducing its ticks. In other words, those phenomena are seen by relativity as an special case of the general effect of Gravitation on time. In the other hand, when the light rays are not collinear with the gravitational field, then we have the bending of the rays. All these phenomena "look" as if "light" interacts with the gravitational field, however, GR forbid us to think that way. Gravitation curves space, and curved space determine the trajectory of objects and the passing of time inside that space. So PWiz your common sense deduction goes against GR. Personally I have never felt comfortable in this schema.
 
@Orodruin Hmmm, I've heard of the term "energy-momentum tensor" a lot in the past few days. The greedy feeling of wanting to grasp the entire concept mathematically is indescribable :H (Getting closer by the day though...!)
@DaleSpam Thanks, I've added Maxwell's equations to my must-learn list :)
@LUIS FONDEUR You've given me a new insight on this. Thanks for adding clarity to my concepts.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...
Train Fall Paradox A train is running on a long bridge over a river. A series of bombs planted on the bridge by terrorists explode simultaneously, and the bridge collapses into dust in an instant. The train falls while keeping its cars in a horizontal line and hits the river. All the cars receive equal damage. However, in the inertial frame of reference in which the train had been at rest, due to the relativity of simultaneity, the bombs at the front explode earlier. The first car falls...