I Does Larmor precession change the force exerted on a magnetic dipole?

AI Thread Summary
A spinning spherical charge in a nonuniform magnetic field exerts a constant force on the dipole, as derived from F=(mu•∇)B=mu_z*k. While torque typically aligns the dipole moment with the magnetic field, it acts perpendicular to both the magnetic field and dipole moment, indicating that angular momentum in the direction of the magnetic field remains unchanged. This suggests that the product mu•B, and therefore the force on the dipole, remains constant despite the presence of torque. Additionally, the discussion highlights that a magnetic field as described cannot exist in nature due to Gauss's Law, which states that the divergence of the magnetic field must equal zero. For a complete understanding of motion in magnetic fields, an equation for the magnetic moment is necessary, as it introduces an additional degree of freedom related to spin.
okaythanksbud
Messages
10
Reaction score
0
TL;DR Summary
The torque on a spinning charge seems like it would change the magnetic moment to be more aligned with the B field but is this actually the case?
If we have a spinning spherical charge in a nonuniform magnet field that points in one direction (for simplicity lets say B=<0,0,k*z>). Since the magnetic field is nonuniform, there will be a force exerted on the dipole, F=(mu•∇)B=mu_z*k. So in this case we expect it to be constant. This is dependent on the assumption that mu•B stays constant
However, we are neglecting torque. Upon first glance wed expect the torque to push the charge to align the dipole moment with the magnetic field. However, the torque points perpendicular to the magnetic field and the dipole moment, so it seems like the angular momentum in the direction of the B field (and hence the magnetic moment) would stay constant, while the angular momentum perpendicular to mu and B would change. So just like this image indicates, I'd expect the motion due to torque to not affect mu_z, which would keep F=(mu•∇)B constant.
1693943069511.png


Even though its the unintuitive answer, I'm lead to believe that mu*B, and hence the force of the dipole in the B field would stay constant. Am I correct in this?
 
Physics news on Phys.org
Your ##\vec{B}##-field can't exist in Nature, because according Gauss's Law for the magnetic field you have ##\vec{\nabla} \cdot \vec{B}=0##.

For complete equations of motion you must have also an equation for the magnetic moment, which is an additional degree of freedom, related to "spin". Here's a paper, dealing with the formalism (in relativistic form) and applying it to the motion in external plane-wave em. fields:

https://arxiv.org/abs/2103.02594
https://doi.org/10.1103/PhysRevA.103.052218
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top