Bob44
- 9
- 0
Imagine that two charged particles, with charge ##+q##, start at the origin and then move apart symmetrically on the ##+y## and ##-y## axes due to their electrostatic repulsion.
The ##y##-component of the retarded Liénard-Wiechert vector potential at a point along the ##x##-axis due to the two charges is
$$
\begin{eqnarray*}
A_y&=&\frac{q\,[\dot{y}]_{\mathrm{ret}}}{4\pi\varepsilon_0 c^2[(x^2+y^2)^{1/2}+y\dot{y}/c]_{\mathrm{ret}}}\tag{1}\\
&+&\frac{q\,[-\dot{y}]_{\mathrm{ret}}}{4\pi\varepsilon_0 c^2[(x^2+y^2)^{1/2}+(-y)(-\dot{y})/c]_{\mathrm{ret}}}\\
&=&0.
\end{eqnarray*}
$$
Along the ##x##-axis we have
$$A_x=A_y=A_z=0\tag{2}$$
and
$$\nabla \cdot \mathbf{A}=\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}=0.\tag{3}$$
Gauss's law is given by
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}\tag{4}.$$
Using the expression for the electric field in terms of potentials
$$\mathbf{E}=-\nabla \cdot \phi - \frac{\partial \mathbf{A}}{\partial t}\tag{5}$$
we substitute eqn.##(5)## into eqn.##(4)## to obtain
$$\nabla^2 \phi + \frac{\partial}{\partial t} \nabla \cdot \mathbf{A} = -\frac{\rho}{\varepsilon_0}.\tag{6}$$
Now by substituting eqn.##(3)## into eqn.##(6)## it seems that we can assert that along the ##x##-axis Poisson's equation holds
$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{7}$$
with the solution for the pair of charged particles
$$\phi=\frac{q}{2\pi\varepsilon_0(x^2+y^2)^{1/2}}.\tag{8}$$
By substituting eqn.##(2)## into eqn.##(5) ## we find that the ##x##-component of the electric field along the ##x##-axis is given by
$$
\begin{eqnarray*}
E_x &=& -\frac{\partial \phi}{\partial x}\tag{9}\\
&\approx& \frac{q}{2\pi\varepsilon_0 x^2} - \frac{3\,q\,y^2}{4\pi\varepsilon_0 x^4}.
\end{eqnarray*}
$$
I began with the Lorenz gauge, but the symmetry of the experimental setup appears to enforce the Coulomb gauge along the ##x##-axis.
The ##y##-component of the retarded Liénard-Wiechert vector potential at a point along the ##x##-axis due to the two charges is
$$
\begin{eqnarray*}
A_y&=&\frac{q\,[\dot{y}]_{\mathrm{ret}}}{4\pi\varepsilon_0 c^2[(x^2+y^2)^{1/2}+y\dot{y}/c]_{\mathrm{ret}}}\tag{1}\\
&+&\frac{q\,[-\dot{y}]_{\mathrm{ret}}}{4\pi\varepsilon_0 c^2[(x^2+y^2)^{1/2}+(-y)(-\dot{y})/c]_{\mathrm{ret}}}\\
&=&0.
\end{eqnarray*}
$$
Along the ##x##-axis we have
$$A_x=A_y=A_z=0\tag{2}$$
and
$$\nabla \cdot \mathbf{A}=\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}=0.\tag{3}$$
Gauss's law is given by
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}\tag{4}.$$
Using the expression for the electric field in terms of potentials
$$\mathbf{E}=-\nabla \cdot \phi - \frac{\partial \mathbf{A}}{\partial t}\tag{5}$$
we substitute eqn.##(5)## into eqn.##(4)## to obtain
$$\nabla^2 \phi + \frac{\partial}{\partial t} \nabla \cdot \mathbf{A} = -\frac{\rho}{\varepsilon_0}.\tag{6}$$
Now by substituting eqn.##(3)## into eqn.##(6)## it seems that we can assert that along the ##x##-axis Poisson's equation holds
$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{7}$$
with the solution for the pair of charged particles
$$\phi=\frac{q}{2\pi\varepsilon_0(x^2+y^2)^{1/2}}.\tag{8}$$
By substituting eqn.##(2)## into eqn.##(5) ## we find that the ##x##-component of the electric field along the ##x##-axis is given by
$$
\begin{eqnarray*}
E_x &=& -\frac{\partial \phi}{\partial x}\tag{9}\\
&\approx& \frac{q}{2\pi\varepsilon_0 x^2} - \frac{3\,q\,y^2}{4\pi\varepsilon_0 x^4}.
\end{eqnarray*}
$$
I began with the Lorenz gauge, but the symmetry of the experimental setup appears to enforce the Coulomb gauge along the ##x##-axis.
Last edited: