Yes, I think that this is indeed true for nonnegative scalars k. The proof is not so hard: just show that S is an upper bound and that no lower upper bound exists.
I'm reviewing Meirovitch's "Methods of Analytical Dynamics," and I don't understand the commutation of the derivative from r to dr:
$$
\mathbf{F} \cdot d\mathbf{r} = m \ddot{\mathbf{r}} \cdot d\mathbf{r} = m\mathbf{\dot{r}} \cdot d\mathbf{\dot{r}}
$$