Rap
- 827
- 10
Q-reeus said:(maybe one could 'practically' have the cat isolated from the box if both are weightless on an orbiting space-station, but hardly the original setup. And that still ignores coupling from thermal radiation, gravitational fluctuations etc.)
Isolation is when the box is isolated from any outside influence - gravitation, table, the outside scientist, etc.
Q-reeus said:In #6 I attempted to highlight repercussions when incorrectly assuming that 'opening box' and viewing defined observation - no, whether or not superposition has in fact occurred has repercussions effecting eg momentum 'imbalances' of the box (an isolation issue) which is quite distinct from 'viewing the cat' as per original scenario.
Hmm - I don't understand that, so I won't respond.
Q-reeus said:If Decoherence is accepted, environmental coupling ensures superposition is not there - period. Hence 'jerks' will tell us whether the cat is for sure dead or alive. If no 'jerks', well Decoherence is 'dead', but I would bet otherwise!
Decoherence does not ensure that superposition is not there. When a simple system (SS) interacts with a measuring device (MD), decoherence assures that the wave function for SS is no longer coherent, but the SS-MD wave function (assuming it is isolated) will still be coherent. Maybe I said that wrong, but what I mean is the SS-MD wave function will still be a purely QM wave function with a huge number of degrees of freedom, which may still be thought of as a superposition of all the dead ones and the live ones, in the case of SC. Only when the SS-MD system is observed does collapse occur.
Q-reeus said:No objection in principle accept that it ignores completely point 2 in #41: both cat and Wigner's friend are not coherent wavefunctions - unless not only perfectly isolated but also in 'ultra deep-freeze', in which case they cannot function as per thought experiment.
Yes, its perfectly isolated but why the requirement of absolute zero? If I can have a coherent wave function for one particle bouncing around, or two, or three, why not 10^23. In principle, I mean.
yuiop said:What I object to is that you seem to think you can prove that the cat is in a superposition of states before the box is opened when there is nothing in the experiment that excludes the possibility that the cat is either dead or alive but not both.
Let me substitute "electron" for cat and spin up/spin down for dead/alive. This reads: "What I object to is that you seem to think you can prove that the electron is in a superposition of states before a measurement is made when there is nothing in the experiment that excludes the possibility that the electron is either spin up or spin down but not both."
This is a "hidden variables" approach to QM which has been shown to be wrong.
yuiop said:By strongly adhering to the claim that the cat is in a superimposed state before the box is opened you are making a statement about the state of the cat about which have made no knowledge or measurement.
We do have prior knowledge - we know that when the box was closed, the cat was alive and the geiger counter had not clicked. In principle, we therefore have a wave function for the situation at time zero. Then we use Schroedingers equation (or whatever) and calculate the change in the wave function over time. After a time, the wave function will be a superposition of dead states and live states.
yuiop said:I contend that if you are in a windowless soundproof building then you as an observer are isolated from the system outside the building and you have a equal lack of knowledge as the observer outside the cat box, the only difference being greater number of possibilities for what is outside the building than inside the cat box.
As long as you can assign a wave function for the entire universe outside the box, I agree.
yuiop said:so it seems to that a Geiger counter and and a mechanical device to break the poison capsule and living cat are more than enough to decohere the system long before the observer outside the box opens the box.
Yes, but decoherence is not the same as wave function collapse. (see above).
yuiop said:but when we close the box we have no idea what is going inside the box and pixies could be playing in there for all we know, but disappear the moment we open the box.
No, we have the wave function when the box was closed, and we know its isolated, so no pixies unless Schroedinger's equation says so.
yuiop said:I find your concept of multiple wave functions (one for every observer) for a given system difficult to swallow when a system can be described by a single wave function. Why do jump to the conclusion of a wave function with no objective existence when everything can be described by a wave function with an objective existence?
When none of the observers are part of the system being observed, then all observers agree on the wave function, and it feels very absolute. I never said it had no objective existence. It is objective in the sense that encodes your MEASUREMENTS, which are objective, but subjective in the sense that it encodes YOUR measurements. When YOUR measurements are OUR measurements, then we only need one wave function. When one of the observers is part of a system being observed by others, then one wave function for all won't be right. (I'm not yelling, just emphasizing).