Rap said:
But how can we ever observe a pure state? Every pure state is connected to a macroscopic measuring device, which a macroscopic scientists observes.
We don't observe pure states. In fact, we don't observe states at all-- we observe outcomes of observations. States, be they pure or mixed, are theoretical devices we use to understand what we actually do observe. Now, if we observe that a particle has "spin up", then we are allowed to treat the particle as being in a pure spin state going forward, because there's nothing else there to know-- there isn't unknown information being glossed over (if spin is what we care about). This is in contrast to the state of ourselves and the observational device we used that gave spin up-- those contain all kinds of unknown information we are indeed glossing over. So there we have a case where the substate (the particle) is in a pure state going forward into a new isolated environment where we can treat it as a closed system, or an environment with known attributes (like fields) which alter the Hamiltonian. The point is, there we can use the postulates of quantum mechanics going forward (but not backward) in time. The larger system that includes us and our instrument, however, cannot be so treated-- it is not a pure state, owing to all that untracked information and relevant history.
The problem with the usual rather bogus way of introducing the cat paradox is that the alive or dead status of the cat is treated like the spin state of the particle, which is just wrong quantum mechanics, because of all that untreated information that goes into an alive or dead cat (not present in a spin state of a particle). So the question is not if the cat can be in a superposition state, we already know the cat cannot be in a superposition state. The question is, can the system that includes the cat be in a pure state, and if it is, how can there be an alive and a dead cat tangled up in that pure state somewhere? That's the right way to describe the paradox, and it suggests what I think is the right answer-- the Bohr answer, the concept of an alive or dead cat is not a description of a global quantum mechanical system, it is a description of a projection onto a subspace, and projections like that are routinely going to be mixed states.
So there's no paradox as to why the cat is in a mixed state of alive or dead, that's just correct quantum mechanics. The paradox doesn't appear until we open the box and become part of the closed quantum mechanical system. We cannot perceive the quantum mechanical system because we are just a part of it and that's not how our brains work anyway, our brains work by throwing out most of the information there and concentrating on a subspace (like one that distinguishes the cat from ourselves instead of the holistic treatment of the full wave function of the closed system). Then we get the real question here: how does the subspace we are concentrating on get actualized into a set with specific attributes,keeping a set that is consistent with our information and throwing away all that isn't? This has to be answered in the language of information processing, it has to be something about
how we do physics itself, not something involving any particular law of physics like quantum mechanics, which is necessarily
subject to how we do physics.
But it applies for a mixed state as well. A mixed state is just a set of pure wavefunctions spanning the space, each multiplied by a probability.
But that isn't a quantum mechanical wave function, it is a mixture of wave functions. A mixture of things that obey quantum mechanical formalism is not something that obeys quantum mechanical formalism, but we know how to do quantum mechanics on it (density matrices and so forth). In particular, it produces no cat paradox, the cat paradox requires us to have a pure state in which there is an alive or dead cat in there somewhere, and that requires the state of the whole system.
I don't understand "isolate it from its own history". In principle, I could close the box knowing the cat's pure wave function.
No, that is just exactly what you could never do, not even in principle. Because the only way to know that would be to do measurements on the cat, but that would involve a measuring device, so immediately the cat becomes a subspace of the thing that is a pure state. Unlike measuring the spin of a single particle, where there is no information being ignored, if you measure an "entire cat", there is vast amounts of information you could never get a handle on, like herding cats (literally). There's no measurement like that which even in principle could result in complete information about the cat's wave function that could be treated as a closed system going forward, too much of the data (all the phase coherences) that would need to be tracked is going to be entangled with the instruments doing the measuring, not to mention the brain processing that information.
This is the key point-- the information that goes into determining a wave function is not in the entity being observed, it is in the environment doing the observing and processing that information. Physics is done by physicists, even if we can imagine the action of hypothetical physicists not actually present in the environment. If that environment does include a real brain, it might be able to treat the entity as having a pure-state wavefunction (as for the spin of a particle), but it could never be empowered to treat a cat in a pure-state wavefunction, there would always have to be too much overlooked information (indeed, judicious overlooking of information is more or less the foundational principle of physics). It is only ever the whole system including the observer that could be treated as a pure state, and only if it started out in a pure state, which brings in the issue of history.
Just before I open the box, I have a superposition of live and dead in the first case, and a mixed state combination of live and dead in the second.
But that makes all the difference. If you have a mixed combination, you have no paradox-- you have a purely classical situation, like a coin that is flipped and covered.
Now I "open the box". Just as I could in principle specify the pure state when I closed the box, I can in principle determine the pure state when I open it.
I dispute that, but even if it were possible, you would never get a pure state that is a superposition of an alive cat and a dead cat that way. The very definition of what an alive cat is requires that certain types of information about the cat be processed by a brain (even a hypothetical one) capable of making that determination, but that processing will require coupling the cat to the brain, bringing in all the untracked information in the brain. Again, both physics and language itself are examples of judicious overlooking of unwanted information, completely anathema to a concept of a pure state wavefunction. Quantum mechanics invokes the concept of a pure state expressly for the purposes of later dispelling it, there is no such thing as quantum mechanics involving only pure states. The way I like to put that is, if an electron could think, it wouldn't use quantum mechanics. I believe that is very consistent with Bohr's approach to the role of the mind of the physicist.
Or, if I started with a pure case, but open the box and just observe a dead cat, I can say that my observation yields a mixed state which contains none of the alive components of the pure state I calculated before opening.
Yes, certainly, we invoke mixed states like that all the time, even in classical physics. There isn't any quantum mechanics at the mixed-state level, the quantum mechanics is all what is happening at the pure-state level, and the cat is not described as a pure state in that example. Indeed, a mixture of suitably detailed pure states is exactly the same thing as a classical description. So when what we mean by "an alive cat" has much more to do with the nature of that
mixture, than the nature of the pure states that go
into it, then we say we have a classical treatment of a cat, not a quantum mechanical treatment.
I would call that a "collapse" of the wave function, but I am not adamant about that terminology.
To say a wave function is collapsed, you must have a wave function in the first place. A mixture is not a wave function, it is a mixture of wave functions. Classically, it is the mixture that matters, not the quantum mechanics of the wave functions-- the evolution of a mixture is a classical evolution, what the individual wave functions are doing gets lost (like a thermodynamic treatment of an ideal gas where we are not a whit for what any given particle is actually doing, only the generic possibilities for what they are allowed to do). When a cat is a super-complicated statistical average of a bunch of possible individual wavefunctions, then it is a classical object, not a quantum mechanical one.
If I start with a mixed case, I can propagate that, then open the box, and again the mixed state collapses to a mixed state of dead cat only. Again, the interaction between the scientist and the box upon opening can be minimal for the mixed case measurement.
Absolutely true-- but only because you are talking about a classical situation through and through.