MHB Does the Sequence Diverge Using Inequalities?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Sequence
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey again! (Blush)
I have to check if the sequence $a_{n}=\frac{1}{\sqrt{n^2+1}}+\frac{2}{\sqrt{n^2+2}}+...+\frac{n}{\sqrt{n^2+n}}$ converges.I thought that:$$\frac{n^{2}(n+1)}{2\sqrt{n^2+n}} \leq a_{n} \leq \frac{n^{2}(n+1)}{2\sqrt{n^2+1}}$$ Because of the fact that:
$$\lim_{n \to \infty}\frac{n^{2}(n+1)}{2\sqrt{n^2+n}}=\lim_{n \to \infty}\frac{n^{2}(n+1)}{2\sqrt{n^2+1}}=\infty$$ I though that the sequence diverges.
Could you tell me if it is right?
 
Physics news on Phys.org
evinda said:
Hey again! (Blush)
I have to check if the sequence $a_{n}=\frac{1}{\sqrt{n^2+1}}+\frac{2}{\sqrt{n^2+2}}+...+\frac{n}{\sqrt{n^2+n}}$ converges.I thought that:$$\frac{n^{2}(n+1)}{2\sqrt{n^2+n}} \leq a_{n} \leq \frac{n^{2}(n+1)}{2\sqrt{n^2+1}}$$ Because of the fact that:
$$\lim_{n \to \infty}\frac{n^{2}(n+1)}{2\sqrt{n^2+n}}=\lim_{n \to \infty}\frac{n^{2}(n+1)}{2\sqrt{n^2+1}}=\infty$$ I though that the sequence diverges.
Could you tell me if it is right?
Right idea, but each time that you have written $n^2$ it ought to be just $n$ (not squared).
 
Opalg said:
Right idea, but each time that you have written $n^2$ it ought to be just $n$ (not squared).

Why?? Istn't $1+2+...+n=\frac{n(n+1)}{2}$ and we take for the left inequality $n$ times $\frac1{\sqrt{n^2+n}}$ and for the second $n$ times $\frac{1}{\sqrt{n^2+1}}$ ??Or am I wrong?? (Thinking)
 
Last edited by a moderator:
evinda said:
Why?? Isn't $1+2+...+n=\frac{n(n+1)}{2}$ and we take for the left inequality $n$ times $\frac1{\sqrt{n^2+n}}$ and for the second $n$ times $\frac{1}{\sqrt{n^2+1}}$ ?? Or am I wrong?? (Thinking)
Take it more slowly: $$\begin{aligned}a_{n} &=\frac{1}{\sqrt{n^2+1}}+\frac{2}{\sqrt{n^2+2}}+ \ldots +\frac{n}{\sqrt{n^2+n}} \\ &\geqslant \frac{1}{\sqrt{n^2+n}}+\frac{2}{\sqrt{n^2+n}}+ \ldots +\frac{n}{\sqrt{n^2+n}} \\ &= \frac{1}{\sqrt{n^2+n}}(1+2+\ldots +n) = \frac{n(n+1)}{2\sqrt{n^2+n}}. \end{aligned}$$
 
Opalg said:
Take it more slowly: $$\begin{aligned}a_{n} &=\frac{1}{\sqrt{n^2+1}}+\frac{2}{\sqrt{n^2+2}}+ \ldots +\frac{n}{\sqrt{n^2+n}} \\ &\geqslant \frac{1}{\sqrt{n^2+n}}+\frac{2}{\sqrt{n^2+n}}+ \ldots +\frac{n}{\sqrt{n^2+n}} \\ &= \frac{1}{\sqrt{n^2+n}}(1+2+\ldots +n) = \frac{n(n+1)}{2\sqrt{n^2+n}}. \end{aligned}$$

Ok..I understand...So,can I use the relation:
$$\frac{n(n+1)}{2\sqrt{n^2+n}} \leq a_{n} \leq \frac{n(n+1)}{2\sqrt{n^2+1}}$$ to conclude that the sequence diverges??
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...

Similar threads

Replies
17
Views
1K
Replies
9
Views
2K
Replies
4
Views
3K
Replies
3
Views
2K
Replies
4
Views
3K
Replies
29
Views
3K