I Does there exist any electric field inside a charged conductor?

We know that there exists no electric field inside a conductor. But while calculating drift velocity of electrons inside an electric conductor, why do we consider the electrons are present inside the charged conductor?
 
27,808
4,265
We know that there exists no electric field inside a conductor.
There certainly can exist an electric field inside a conductor. The electric field is proportional to the current density for ordinary conductors. This is known as Ohm's law
 
Is it electric field or electric current?
 
What you're referring to is probably what you get told in electrostatics at first, but the lack of an electric field is actually the condition for the static state, it can exist and as mentioned here causes a current to flow, this is now electrodynamics
 

Paul Colby

Gold Member
893
182
On the atomic scale there are always significant electric fields but these average out.
 
What you're referring to is probably what you get told in electrostatics at first, but the lack of an electric field is actually the condition for the static state, it can exist and as mentioned here causes a current to flow, this is now electrodynamics
Yeah, I refer to electrostatics
 

vanhees71

Science Advisor
Insights Author
Gold Member
12,220
4,582
In electrostatics by definition you assume that all fields are time independent and that all current densities are vanishing, ##\vec{j}=0##. Now you have (in non-relativistic approximation) ##\vec{j}=\sigma \vec{E}##, where ##\sigma## is the electric conductivity of your medium. For a conductor ##\sigma \neq 0##, which implies that ##\vec{E}=0##, because in the electrostatic case you have by definition ##\vec{j}=0##.
 
In electrostatics by definition you assume that all fields are time independent and that all current densities are vanishing, ##\vec{j}=0##. Now you have (in non-relativistic approximation) ##\vec{j}=\sigma \vec{E}##, where ##\sigma## is the electric conductivity of your medium. For a conductor ##\sigma \neq 0##, which implies that ##\vec{E}=0##, because in the electrostatic case you have by definition ##\vec{j}=0##.
I can't understand, please be elaborate.
 

vanhees71

Science Advisor
Insights Author
Gold Member
12,220
4,582
What don't you understand? It's very simple. In electrostatics by definition the current density vanishes. In a conductor, according to Ohm's Law, the current density is proportional to the electric field and thus the electric field must vanish within the conductor. I don't know, how I can this elaborate more.
 

Want to reply to this thread?

"Does there exist any electric field inside a charged conductor?" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top