A Domain Wall Geometries: Continuous Coordinates, Discontinuous Metric

  • A
  • Thread starter Thread starter Roy_1981
  • Start date Start date
  • Tags Tags
    Domain Wall
Roy_1981
Messages
51
Reaction score
8
Hi all, I need some help regarding domain wall geometries, essentially a bubble of some spacetime (say deSiiter or flat) inside another kind, say anti-deSitter. For simplicity it is spherical symmetric situation and we are intent on using Schwarzschild like static coordinates. So now I am used to the set up where the metric is continuous across the (infinitely thin) domain wall/bubble wall, while the static time coordinate is discontinuous across while the radial coordinate is a global (continuous) coordinate.

But I have heard that one can also set up coordinates so that the metric is discontinuous while BOTH the static coordinates "r" and "t" are continuous. My problem is I can't seem to locate a reference where this is done or illustrated. All the references I can locate use continuous metric and discontinuous coordinates.

I would tremendously appreciate if any of you forum members/user can suggest a reference on "continuous coordinates/ discontinuous metric" choice.
 
Physics news on Phys.org
Roy_1981 said:
the static time coordinate is discontinuous

I don't understand what this means. If you are using a single coordinate chart, the coordinate values must change continuously from event to event everywhere in the chart. So a discontinuous coordinate appears to violate a basic requirement of a coordinate chart.

Roy_1981 said:
I have heard that one can also set up coordinates so that the metric is discontinuous

This would also violate a basic requirement of a coordinate chart.
 
Just as idealized situations with surface charge layers and distributional (delta function) volume charge densities, and with electric field discontinuities are useful in undergrad electromagnetism, mass hypersurface layers with metric component discontinuities and distributional stress-energy tensors are useful in general relativity, e.g., for domain walls. This is called the the thin shell/junction condition formalism.
 
Hi George Jones,

Indeed you are in the right direction. In case of gravity you can integrate Einstein equation across the shell to obtain junction conditions, relating metric derivatives to matter on thin shell. But what I asked is a bit different - its about a choice of gauge (coordinates) and as I mentioned there are two choices (perhaps more) to parametrize the geometry. atm I just can't seem to locate any reference which uses the second gauge choice.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top