Double Integral for Volume Under a Surface

Click For Summary
SUMMARY

The discussion focuses on calculating the volume under the surface defined by z = y(x+2) over a specified region bounded by the curves y + x = 1, y = 1, and y = sqrt(x). The initial approach involved splitting the integral into two parts based on the intersection point at x = (3 - sqrt(5))/2. However, participants concluded that a single double integral is sufficient to solve the problem, as the area can be effectively described with proper limits. The expected volume of 9/8 was identified as incorrect, with upper bounds calculated yielding results significantly less than 1.

PREREQUISITES
  • Understanding of double integrals in calculus
  • Familiarity with the concept of volume under a surface
  • Knowledge of bounding curves and regions in the Cartesian plane
  • Experience with integration techniques, specifically in multiple dimensions
NEXT STEPS
  • Study the setup of double integrals for volume calculations
  • Learn about changing the order of integration in double integrals
  • Explore the use of computational tools like Wolfram Alpha for integral evaluation
  • Investigate the geometric interpretation of integrals in relation to bounded regions
USEFUL FOR

Students and educators in calculus, particularly those focused on multivariable calculus, as well as anyone involved in mathematical modeling of volumes under surfaces.

eprparadox
Messages
133
Reaction score
2

Homework Statement


Find the volume under the surface z = y(x+2) and over the area bounded by y+x = 1, y = 1 and y = sqrt(x)

Homework Equations





The Attempt at a Solution



Based on the geometry of the bounds, I broke this integral into two parts. I first found the intersection of the sqrt(x) and y = 1-x. This is at x = \dfrac {1} {2}\left( 3-\sqrt {5}\right)

Then my first integral was this:

\int _{x=0}^{x=\dfrac {1} {2}\left( 3-\sqrt {5}\right) }\int _{y=1-x}^{y=1}y\left( x+2\right) dydx

and my second integral is this:

\int _{x=\dfrac {1} {2}\left( 3-\sqrt {5}\right) }^{x=1}\int _{y=\sqrt {x}}^{y=1}y\left( x+2\right) dydx

However when I solve this integral, I don't get the correct answer (which should be 9/8 according to the solution).

Where am I going wrong?

Thanks!
 
Physics news on Phys.org
By plotting the region it looks like you should be using four double integrals.
 
Last edited:
eprparadox said:

Homework Statement


Find the volume under the surface z = y(x+2) and over the area bounded by y+x = 1, y = 1 and y = sqrt(x)

Homework Equations





The Attempt at a Solution



Based on the geometry of the bounds, I broke this integral into two parts. I first found the intersection of the sqrt(x) and y = 1-x. This is at x = \dfrac {1} {2}\left( 3-\sqrt {5}\right)

Then my first integral was this:

\int _{x=0}^{x=\dfrac {1} {2}\left( 3-\sqrt {5}\right) }\int _{y=1-x}^{y=1}y\left( x+2\right) dydx

and my second integral is this:

\int _{x=\dfrac {1} {2}\left( 3-\sqrt {5}\right) }^{x=1}\int _{y=\sqrt {x}}^{y=1}y\left( x+2\right) dydx

However when I solve this integral, I don't get the correct answer (which should be 9/8 according to the solution).

Where am I going wrong?

Thanks!

I assume you want to bound the volume below by the plane z = 0.

What was your final answer? I do not get the value 9/8, either. In fact, since 9/8 > 1 it cannot be the correct answer, for even getting a crude upper bound gives an answer < 1. Below, let
a = \frac{3}{2}-\frac{\sqrt{5}}{2} \doteq 0.381966012
be x-value of the intersection between the square root and the slanted line.

The base of the first integral is the right-triangle with sides ##a## and ##a##, so has area ##A_1 = a^2/2 \doteq 0.07294901715.## A simple upper bound on ##z## is ##z \leq 3## for all feasible ##x,y##, so the first integral, ##I_1##, has the simple upper bound ##I_1 \leq U_1 = 3 A_1 \doteq 0.2188470514##.

The base of the second integral is a "triangle" with a curved hypotenuse, so has area less than a true triangle with the same base and height; that is we have:
\text{area}_2 &lt; A_2 \equiv a (1-a)/2 \doteq 0.1180339888
Thus, an upper bound on the second integral, ##I_2##, is ##I_2 \leq U_2 = 3A_2 \doteq 0.3541019664##. An upper bound on the whole double integral is ##U = U_1 + U_2 \doteq 0.5729490180.## This is a lot smaller than the claimed value of 9/8 = 1.125.
 
Last edited:
Also, I would point out that, given the shape of that region, a dxdy order of integration allows setting up only one double integral.
 
@Zondrina: I don't think there are 4 double integrals because this area is bounded by y = 1 and comes to a point at the intersection of y = 1 - x and y = sqrt(x)

@Ray Vickson: yeah I get a number much smaller than 1. I calculated the integrals on wolfram alpha and I ended up getting something like .38@LCKurtz: I'm not sure I understand what you mean. Care to explain more?
 
LCKurtz said:
Also, I would point out that, given the shape of that region, a dxdy order of integration allows setting up only one double integral.

@LCKurtz: I'm not sure I understand what you mean. Care to explain more?

I mean put the proper limits on$$
\iint y(x+2)~dxdy$$Just one double integral is necessary.
 
@Zondrina: I don't think there are 4 double integrals because this area is bounded by y = 1 and comes to a point at the intersection of y = 1 - x and y = sqrt(x)

Yes I didn't notice this when I was sleepy. The region looks like it's divided up into three pieces, not four (somehow my brain convinced me there was a line at ##x=1## last night); The left triangle like piece, the upper triangular like piece and the bottom piece.

The limits for ##x## appear to be different in each region, as are the limits for ##y##. If I'm seeing this now, it looks like you would need five integrals. Not quite sure how you would do this with just one integral.
 

Attachments

  • Screen Shot 2014-09-03 at 9.14.01 AM.png
    Screen Shot 2014-09-03 at 9.14.01 AM.png
    7.7 KB · Views: 550
eprparadox said:
@Zondrina: I don't think there are 4 double integrals because this area is bounded by y = 1 and comes to a point at the intersection of y = 1 - x and y = sqrt(x)

@Ray Vickson: yeah I get a number much smaller than 1. I calculated the integrals on wolfram alpha and I ended up getting something like .38


@LCKurtz: I'm not sure I understand what you mean. Care to explain more?

Intuitively, you have chosen to split up the base area into thin vertical slices parallel to the y-axis. Essentially, the suggestion of LCKurtz is that you split it up instead into thin horizontal slices parallel to the x-axis.
 
Zondrina said:
Yes I didn't notice this when I was sleepy. The region looks like it's divided up into three pieces, not four (somehow my brain convinced me there was a line at ##x=1## last night); The left triangle like piece, the upper triangular like piece and the bottom piece.

The limits for ##x## appear to be different in each region, as are the limits for ##y##. If I'm seeing this now, it looks like you would need five integrals. Not quite sure how you would do this with just one integral.

attachment.php?attachmentid=72664&d=1409750071.png


@Zondrina: The only region that is described in the original post is the upper one, and it takes one double integral if done as a dxdy integral.
 
  • Like
Likes 1 person
  • #10
I see all the lines only have one region where they all form a closed boundary.

Thank you for clarifying that.
 
Last edited:
  • #11
Hey, thanks so much! Makes sense now.

Thanks!
 
  • #12
eprparadox said:
Hey, thanks so much! Makes sense now.

Thanks!

Which response are you replying to? Please use the "quote" button when responding; it keeps the thread under control.
 

Similar threads

Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
6K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
20
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K