Double Pendulum Problem - Lagrangian

  • Thread starter Nusc
  • Start date
  • #1
753
2

Homework Statement



Rather than solve the double pendulum problem with two masses in the usual way.

Instead express the coordinates of the second mass, in terms of the coordinates of the mass above it.

[tex]
$ x2=x_1+\xi = L_1Sin[\theta]Cos[\phi]+L_2Sin[\alpha]Cos[\beta]$\\
$ y2=y_1+ \eta = L_1Sin[\theta]Sin[\phi]+L_2Sin[\alpha]Sin[\beta]$\\
$ z2=z_1-\xi = L_1-L_1Cos[\theta]-L_2Sin[\alpha]Cos[\beta]$
[/tex]


Wouldn't you suspect that the Lagrangian remain invariant? Is there a way to reparameterize these equations?

Homework Equations





The Attempt at a Solution

 

Attachments

  • Picture 1.jpg
    Picture 1.jpg
    52.5 KB · Views: 507

Answers and Replies

  • #2
753
2


No one has any opinions?

Does anyone know what I'm talking about?
 

Attachments

  • DSCN0990.jpg
    DSCN0990.jpg
    10.9 KB · Views: 489
  • DSCN0991.jpg
    DSCN0991.jpg
    26.9 KB · Views: 454
  • DSCN0992.jpg
    DSCN0992.jpg
    27.1 KB · Views: 470
Last edited:
  • #3
753
2


Then the problem I'm interested in is the following
 

Attachments

  • DSCN0994.jpg
    DSCN0994.jpg
    34.9 KB · Views: 485
  • DSCN0993.jpg
    DSCN0993.jpg
    27.7 KB · Views: 433
  • #5
753
2


I'm not sure if I had defined z_2 correct:
[tex]


$ z2=z_1-\xi = L_1-L_1Cos[\theta]-L_2Cos[\alpha]$

[/tex]
 
Top