MHB Draw Sketch: Right Triangle Area = Half Parallelogram Area (Party)

AI Thread Summary
The discussion revolves around the relationship between the areas of right triangles and a parallelogram. It is established that two identical right triangles at either end of the parallelogram can collectively occupy half the area of the parallelogram. Participants clarify that for the triangles to represent exactly half the area, there should be no additional sections between them, implying a direct vertical connection from one vertex to another. The conversation includes visual representations to illustrate the geometric configurations being discussed. Ultimately, the consensus is that the right triangles can indeed represent half the area of the parallelogram under specific conditions.
mathlearn
Messages
331
Reaction score
0
View attachment 6172

Any thoughts on the sketch? (Party)

Many Thanks :)
 

Attachments

  • New Document 59-Page 1.jpg
    New Document 59-Page 1.jpg
    25 KB · Views: 142
Last edited by a moderator:
Mathematics news on Phys.org
I presume that the "right triangle" referred to is the one at the right of the parallelogram. It should be clear to you that the right triangle at the left is identical to the first one and has the same area. So in order that the area of either of those two right triangles be "exactly half" the area of the parallelogram, there must be nothing but those two right triangles. That is, there is no "middle section"- the "two" verticals must be one- that vertical goes from vertex D to vertex B. What does that look like?
 
HallsofIvy said:
I presume that the "right triangle" referred to is the one at the right of the parallelogram. It should be clear to you that the right triangle at the left is identical to the first one and has the same area. So in order that the area of either of those two right triangles be "exactly half" the area of the parallelogram, there must be nothing but those two right triangles. That is, there is no "middle section"- the "two" verticals must be one- that vertical goes from vertex D to vertex B. What does that look like?

(Wave) Hello HallsofIvy,

This should be that identical right angled triangle at the left

View attachment 6176

Then the triangle which has half the area of the parallelogram would be,

View attachment 6177

Correct ? (Happy)

Many THanks (Party)
 

Attachments

  • New Document 59-Page 1.jpg
    New Document 59-Page 1.jpg
    13.1 KB · Views: 119
  • New Document 59-Page 1.jpg
    New Document 59-Page 1.jpg
    13.4 KB · Views: 128
mathlearn said:
This should be that identical right angled triangle at the left

Then the triangle which has half the area of the parallelogram would be,

Correct ? (Happy)

Hey mathlearn! (Smile)

I think the right triangle is fixed.
We have something like this:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]
%preamble \usetikzlibrary{arrows}

\def\x{6};

\draw[ultra thick, blue]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=3mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

And if we make $x$ smaller, we get:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]
%preamble \usetikzlibrary{arrows}

\def\x{5};

\draw[ultra thick, blue]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

Hmm... let's make $x$ negative:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]
%preamble \usetikzlibrary{arrows}

\def\x{-2};

\draw[ultra thick, red]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

I think we need $x=0$:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]
%preamble \usetikzlibrary{arrows}

\def\x{0};

\draw[ultra thick, red]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 - 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above,xshift=3mm] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

Now the right triangle takes up half of the parallellogram. (Happy)​
 
Last edited:
mathlearn said:
(Wave) Hello HallsofIvy,

This should be that identical right angled triangle at the left
Then the triangle which has half the area of the parallelogram would be,
Correct ? (Happy)

Many THanks (Party)
No, those are not right triangles. And it is always true that the two triangles you get by drawing a diagonal have area half the parallelogram.

- -

- - - Updated - - -

I like Serena said:
Hey mathlearn! (Smile)

I think the right triangle is fixed.
We have something like this:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]

\def\x{6};

\draw[ultra thick, blue]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=3mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

And if we make $x$ smaller, we get:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]

\def\x{5};

\draw[ultra thick, blue]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

Hmm... let's make $x$ negative:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]

\def\x{-2};

\draw[ultra thick, red]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

I think we need $x=0$:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]

\def\x{0};

\draw[ultra thick, red]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 - 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above,xshift=3mm] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

Now the right triangle takes up half of the parallellogram. (Happy)​

Yes, that was what I meant. Nice drawings!​
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top