jostpuur
- 2,112
- 19
How do you prove that there does not exist a set X such that
<br /> \textrm{card}(X) < \textrm{card}(\mathbb{N})<br />
but still
<br /> n < \textrm{card}(X),\quad \forall\;n\in\mathbb{N}<br />
-----------------
edit:
I proved this already. No need to answer...
------------------
I came up with a new question! Is this true?
<br /> \textrm{card}\Big(\bigcup_{n=1}^{\infty} \mathbb{N}^n\Big) = \textrm{card}(\mathbb{R})<br />
<br /> \textrm{card}(X) < \textrm{card}(\mathbb{N})<br />
but still
<br /> n < \textrm{card}(X),\quad \forall\;n\in\mathbb{N}<br />
-----------------
edit:
I proved this already. No need to answer...
------------------
I came up with a new question! Is this true?
<br /> \textrm{card}\Big(\bigcup_{n=1}^{\infty} \mathbb{N}^n\Big) = \textrm{card}(\mathbb{R})<br />
Last edited: