E=mc^2: What is Mass & Matter?

ebodet18
Messages
9
Reaction score
0
Mass or Matter in E=mc^2 ??

I understand that m stands for mass but I thought matter was transformed into energy. Is matter what mass is made of? I just don't get it.
 
Physics news on Phys.org
Matter has historically been a loosely defined term, and its definition has evolved gradually over time. Today, many people seem to use it to mean fermions as opposed to bosons, but that's not universally accepted or understood. It really depends on context. The m in E=mc^2 is for mass, regardless of what the mass is made of.
 
bcrowell said:
Today, many people seem to use it to mean fermions as opposed to bosons, but that's not universally accepted or understood.

I think you might mean fermions/Higgs boson as opposed to gauge bosons?
To clarify to the OP: this distinction corresponds to the fact that we need to put in the fermions and Higgs boson by hand in the standard model, but that we get the gauge bosons "automatically" as they are the particles mediating the fundamental forces. Naively, this usage is the generalization of calling the electron matter, and the photon not (again: because photons merely describe interaction between matter).

Your question is a good one, and as bcrowelln has answered: what E = mc^2 is telling is, is that the rest energy of an object is related to its mass in that way. That's it. What this formula suggests, however, is much more. One knew, for example, that light had energy in it (but they didn't know it had mass) and one knew that atoms have mass (but they didn't really know it had energy for just "existing") but in light of this new formula, the question easily popped up: can we not somehow convert atoms into light, as long as we conserve this energy? In other words: this formula implied that rest energy might be a new kind of potential energy that you could convert. And indeed, we now know that for example electrons and positrons ("matter") can combine into photons ("not matter"), and the photons will have at least energy E = mc^2.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...

Similar threads

Replies
26
Views
2K
Replies
2
Views
1K
Replies
17
Views
2K
Replies
17
Views
2K
Replies
14
Views
2K
Replies
3
Views
929
Back
Top