- 1,001
- 11
Homework Statement
\text{Show that } \epsilon_{ijk} \epsilon_{mjk} = 2\delta_{im}
Homework Equations
<br /> \begin{equation*}<br /> \epsilon_{ijk} \epsilon_{mnp} =<br /> \left| \! \begin{array}{ccc} <br /> \delta_{im} & \delta_{in} & \delta_{ip} <br /> \\ \delta_{jm} & \delta_{jn} & \delta_{jp}<br /> \\ \delta_{km} & \delta_{kn} & \delta_{kp} \end{array} \! \right| <br /> \end{equation*}
The Attempt at a Solution
<br /> \begin{align*}<br /> &\text{Evaluating the first term of the determinant, I get:}<br /> \\<br /> &\delta_{im}<br /> \left| \! \begin{array}{cc} <br /> \delta_{jj} & \delta_{jk}<br /> \\ \delta_{kj} & \delta_{kk} \end{array} \! \right| <br /> = \delta_{im}(\delta_{jj}\delta_{kk}-\delta_{jk}\delta_{kj}) = \delta_{im}(9-3) = 6\delta_{im}<br /> \\<br /> & \text{But I'm not sure that's correct. If I just look at } \delta_{ii} \text{ , I get} \\<br /> & \delta_{ii} = \delta_{11} + \delta_{22} + \delta_{33} = 3<br /> \text{ which means }<br /> \delta_{jj}\delta_{kk} = 3(3) = 9<br /> \end{align*}
Am I doing something wrong?