Eddy Current Brake Behavior (Accelerating From Rest)

Click For Summary
Eddy current brakes can effectively slow down a non-ferromagnetic metal when subjected to sudden forces, with their effectiveness influenced by factors like magnet strength and metal conductivity. The braking force generated is proportional to the velocity, meaning it decreases as the object slows down. For immediate stopping, additional mechanisms may be necessary, as the braking force diminishes over time. Practical applications, such as in fairground rides, demonstrate the utility of electromagnetic brakes in similar scenarios. Overall, while eddy current brakes can provide significant resistance, they may not achieve instantaneous stops without further enhancements.
SCM25
Messages
1
Reaction score
0
Hey guys,

So I'm interested in the application of an eddy current brake system as a high intensity shock absorber of some sort. The system would consist of permanent magnets concentrated on a stationary, non ferromagnetic metal. If a sudden, intense force were to act upon the non ferromagnetic metal, how effective would the magnets be at slowing it down and stopping it? Would it be stopped almost immediately? As stated above, the force would be sudden and violent, so the metal would want to accelerate quickly. I know that there are many factors that will effect the outcome (magnet strength, metal thickness, etc.) and calculating the retarding force of an eddy current brake at high speeds is a difficult task, but in general what kind of behavior should I expect? Any and all input would be much appreciated. Thank you.
 
Physics news on Phys.org
Very few cases can be worked out analytically. I´d suggest Smythe´s "Static and Dynamic Electricity"; he studies a rotating disk in a uniform magnetic field and computes the resulting torque. For more complex systems a numerical package is almost mandatory. As a general rule, the higher the field's strength and the metal's conductivity, the higher the braking force..
 
electromagnetic brakes are a common way to brake fairground rides. A magnet on the car runs in an aluminium or copper tube at the end of the ride.
You might find some practical examples in this area.
 
SCM25 said:
Hey guys,

So I'm interested in the application of an eddy current brake system as a high intensity shock absorber of some sort. The system would consist of permanent magnets concentrated on a stationary, non ferromagnetic metal. If a sudden, intense force were to act upon the non ferromagnetic metal, how effective would the magnets be at slowing it down and stopping it? Would it be stopped almost immediately? As stated above, the force would be sudden and violent, so the metal would want to accelerate quickly. I know that there are many factors that will effect the outcome (magnet strength, metal thickness, etc.) and calculating the retarding force of an eddy current brake at high speeds is a difficult task, but in general what kind of behavior should I expect? Any and all input would be much appreciated. Thank you.
The braking force is proportional to the velocity (or some power of it), so as the object slows down, the braking force decreases. You would probably need some other augmentation to fully stop your object.
 
Happy holidays folks. So I spent some time over the Thanksgiving holidays and developed a program that renders electric field lines of swiftly moving charges according to the Liénard–Wiechert formula. The program generates static images based on the given trajectory of a charge (or multiple), and the images were compiled into a video that shows the animated field lines for harmonic movement and circular movement of a charge (or two charges). Video: The source code is available here...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
26
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 17 ·
Replies
17
Views
4K