Undergrad Effective mass from the Lagrangian

Click For Summary
The discussion revolves around the derivation of effective mass from a given Lagrangian, specifically addressing the terms involving the function f dependent on velocity v. The Euler-Lagrange equations lead to the conclusion that the effective mass can be expressed as M = m + 2(∂f/∂v) + (∂²f/∂v²). A correction was made regarding the multiplication of the second derivative term, which should involve v rather than acceleration. The participants agree that the effective mass concept is valid and can relate to special relativity, while also considering the implications of a velocity-dependent force. The conversation concludes with a consensus on the nature of the effective mass and its derivation.
Malamala
Messages
348
Reaction score
28
Hello! I have the following Lagrangian:

$$L = \frac{1}{2}mv^2+fv$$

where ##v = \dot{x}##, where x is my coordinate and f is a function of v only (no explicit dependence on t or x). What I get by solving the Euler-Lagrange equations is:

$$\frac{d}{dt}(mv+f+\frac{\partial f}{\partial v} v) = 0$$
$$m\ddot{x} + \frac{\partial f}{\partial v}\ddot{x} + \frac{\partial f}{\partial v}\ddot{x} + \frac{\partial^2 f}{\partial v^2}\ddot{x} = 0$$
$$(m+2\frac{\partial f}{\partial v}+ \frac{\partial^2 f}{\partial v^2})\ddot{x} = 0$$

Is this correct? Can I think of this system as a particle of effective mass ##M = m+2\frac{\partial f}{\partial v}+ \frac{\partial^2 f}{\partial v^2}## moving without any force acting on it? Thank you!
 
Physics news on Phys.org
You made a trivial error, ##\partial^2f/\partial v^2## is multiplied with ##\dot{x}##, not ##\ddot{x}##. Hence, in addition to an effective mass multiplying ##\ddot{x}##, there is also a ##v##-dependent force. Otherwise, the idea of effective ##v##-dependent mass seems OK to me. After all, an effective ##v##-dependent mass appears also in old formulations of special relativity. In fact, with a right choice of ##f##, you can reproduce the special relativistic ##v##-dependent mass exactly. What remains to be seen is whether the ##v##-dependent force could be interpreted as the magnetic force, I leave it as a research/exercise problem for the others.
 
Last edited:
Demystifier said:
You made a trivial error, ##\partial^2f/\partial v^2## is multiplied with ##\dot{x}##, not ##\ddot{x}##. Hence, in addition to an effective mass multiplying ##\ddot{x}##, there is also a ##v##-dependent force. Otherwise, the idea of effective ##v##-dependent mass seems OK to me. After all, an effective ##v##-dependent mass appears also in old formulations of special relativity. In fact, with a right choice of ##f##, you can reproduce the special relativistic ##v##-dependent mass exactly. What remains to be seen is whether the ##v##-dependent force could be interpreted as the magnetic force, I leave it as a research/exercise problem for the others.
Thank you! For the ##\partial^2f/\partial v^2## term, don't we have ##\frac{d}{dt}(\partial f/\partial v)v = \partial^2f/\partial v^2 \frac{dv}{dt}v = \partial^2f/\partial v^2 \ddot{x}\dot{x}##? So indeed I did a mistake, but that term would still contribute as an effective mass by ##\partial^2f/\partial v^2 \dot{x}## (I missed the ##\dot{x}## term before), no? Or am I doing my derivatives wrong?
 
Malamala said:
Thank you! For the ##\partial^2f/\partial v^2## term, don't we have ##\frac{d}{dt}(\partial f/\partial v)v = \partial^2f/\partial v^2 \frac{dv}{dt}v = \partial^2f/\partial v^2 \ddot{x}\dot{x}##? So indeed I did a mistake, but that term would still contribute as an effective mass by ##\partial^2f/\partial v^2 \dot{x}## (I missed the ##\dot{x}## term before), no? Or am I doing my derivatives wrong?
You are right. There is no "force", everything can be put into the effective mass. I made an error too.
 
I built a device designed to brake angular velocity which seems to work based on below, i used a flexible shaft that could bow up and down so i could visually see what was happening for the prototypes. If you spin two wheels in opposite directions each with a magnitude of angular momentum L on a rigid shaft (equal magnitude opposite directions), then rotate the shaft at 90 degrees to the momentum vectors at constant angular velocity omega, then the resulting torques oppose each other...

Similar threads

  • · Replies 2 ·
Replies
2
Views
523
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K