Eigenfunction of a Jones Vector (System)

  1. I am trying to find out just how to solve for the eigenfunction given a system, namely the parameters of an optical system (say a polarizer) in the form of a 2 by 2 Jones Vector. I know how to derive the eigenvalue, using the the constituent det(λI -A) = 0, 'A' being the system at hand and 'λ' the eigenvalue. How do you go about solving for the eigenfunction?
  2. jcsd
  3. mathman

    mathman 6,754
    Science Advisor
    Gold Member

  4. Philip Wood

    Philip Wood 1,180
    Gold Member

    Once you've found λ, you can substitute its value into Av = λv. If you then multiply out the left hand side and equate components, v1 and v2, of v on either side, you'll get two equivalent equations linking v1 and v2. Eiter will give you the ratio v1/v2. This is fine: the eigenvalue equation is consistent with any multiplied constant in the eigenvector. There will be a normalisation procedure for fixing the constant.
  5. so I got λ = 1. 'A' I assume is the system matrix or my Jones Vector, which is given as a 2 by 2 matrix. So that makes Av=v, thus A must be 1?? The 'v' values must be the same, but isn't 'v' the eigenfunction itself? The equation Av=v eliminates the 'v' value. What am I doing wrong here?
  6. Philip Wood

    Philip Wood 1,180
    Gold Member

    v is the vector and A is the matrix. The matrix isn't a vector, but is an operator which operates on the vector.

    Try it with a matrix A representing a linear polariser at 45° to the base vectors. This matrix has all four elements equal to 1/2. This gives eigenvalue of 1, and on substituting as I explained above, shows the two components, v1 and v2, of the vector to be equal, which is just what you'd expect.
Know someone interested in this topic? Share this thead via email, Google+, Twitter, or Facebook

Have something to add?