I Eigenkets belonging to a range of eigenvalues

  • I
  • Thread starter Thread starter Spin One
  • Start date Start date
  • Tags Tags
    eigenvalues range
Spin One
Messages
4
Reaction score
0
When one wants to represent a general ket in a basis consisting of eigenkets each attributed to an eigenvalue in a range, say from a to b, why does one take the integral of said kets from a to b w.r.t. the eigenvalues?
upload_2018-6-25_13-3-42.png

I understand that the integral here plays a role analogous to a sum in the case where a general ket is expressed in terms of eigenkets belonging to discrete eigenvalues, but I don't understand why each vector is multiplied by an infinitesimal change near the eigenvalue it belongs to. Interpreting this integral as the limit of a sum we get:
[P>=Σ[ξ>Δξ (lim.Δξ→0)
where I do not understand the role of Δξ.
 

Attachments

  • upload_2018-6-25_13-3-42.png
    upload_2018-6-25_13-3-42.png
    657 bytes · Views: 805
Physics news on Phys.org
I looked over the thread about Rigged Hilbert Spaces, and I'm not sure that it completely explained the relationship between continuous and discrete bases.

In a non-rigorous way, you can think of the continuous basis as a limiting case of the discrete basis. However, in going from discrete to continuous, the normalization convention for basis elements changes.

Let me illustrate. Suppose you have an operator ##\Lambda## with discrete eigenvalues ##\lambda_j##. I think in order for the continuum limit to make sense int the most straightforward way, you need to assume that ##\lambda_{j+1} > \lambda_j##, and that there are infinitely many ##\lambda_j##, and that the corresponding eigenstates ##|n\rangle## form a complete orthonormal basis. That means that
  1. If ##n \neq m##, then ##\langle n|m\rangle = 0##
  2. ##\langle n|n\rangle = 1##
  3. If ##|\psi\rangle## is a properly normalized state, then ##|\psi\rangle = \sum_n \langle n|\psi\rangle |n\rangle##
  4. ##\sum_n |\langle n|\psi\rangle|^2 = 1##
Now, if the coefficients ##\langle n|\psi\rangle## change slowly with ##n## (and maybe we also have to assume that ##(\Delta \lambda)_n \equiv \lambda_{n+1} - \lambda_n## remains bounded? I'm not sure...) then we can define a new ket with a different normalization:

##|\lambda_n\rangle \equiv \frac{1}{\sqrt{(\Delta \lambda)_n}} |n\rangle##

In terms of the ##|\lambda_n\rangle##, we have:

##|\psi\rangle = \sum_n (\Delta \lambda)_n \langle \lambda_n |\psi\rangle |\lambda_n\rangle##

The kets ##|\lambda_n\rangle## have a different normalization:

  • ##\langle \lambda_n | \lambda_m \rangle = 0## (if ##m \neq n##)
  • ##\langle \lambda_n | \lambda_n \rangle = \frac{1}{(\Delta \lambda)_n}##
If the states ##|\lambda_n\rangle## change smoothly with ##n##, then this can be approximated by an integral:

##|\psi\rangle = \int d\lambda \langle \lambda |\psi\rangle |\lambda\rangle##
 
Last edited:
So dλ is introduced to make the product between each eigenket and dλ finite, since the eigenkets will be of "infinite length" in the sense of lim.Δλ→0[1/Δλ]. That makes sense. In that case, will the coefficients <λIΨ> be infinitesimal? Otherwise the integral would diverge, even over a finite range.
 
Spin One said:
So dλ is introduced to make the product between each eigenket and dλ finite, since the eigenkets will be of "infinite length" in the sense of lim.Δλ→0[1/Δλ]. That makes sense. In that case, will the coefficients <λIΨ> be infinitesimal? Otherwise the integral would diverge, even over a finite range.

Yes - but unless you want to get into non-standard analysis infinitesimals are a load of the proverbial, although used every now and then when speaking informally. I do it but shouldn't really.

There is no way to understand it properly unless you study the references in my link.

Start with Distribution Theory.

Thanks
Bill
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top