• Support PF! Buy your school textbooks, materials and every day products Here!

Eigenspace of the transformation

  • Thread starter fk378
  • Start date
  • #1
367
0

Homework Statement


Without writing A, find the eigenvalue of A and describe the eigenspace.

T is the transformation on R2 that reflects points across some line through the origin.




The Attempt at a Solution



The eigenvalue could either be -1 or 1. I'm not sure how to figure out the eigenspace of each of these eigenvalues though. And, just to be clear, is the basis of the eigenspace composed of the eigenvectors?
 

Answers and Replies

  • #2
dx
Homework Helper
Gold Member
2,011
18
The eigenspace of an eigenvalue is the set of all eigenvectors with that eigenvalue plus the zero vector.

And, just to be clear, is the basis of the eigenspace composed of the eigenvectors?
Depends on which eigenvectors you choose. For example, say you have the matrix

[tex] \[ \left( \begin{array}{ccc} \lambda & 0\\ 0 & \lambda\end{array} \right)\] [/tex]

This matrix has eigenvalue [tex] \lambda [/tex]. Every vector in the plane is an eigenvector of this matrix. If you choose two eigenvectors lying on the same line, they obviously dont span the eigenspace.
 

Related Threads for: Eigenspace of the transformation

  • Last Post
Replies
9
Views
5K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
2
Views
3K
  • Last Post
Replies
3
Views
6K
  • Last Post
Replies
15
Views
2K
  • Last Post
Replies
7
Views
2K
Replies
4
Views
2K
  • Last Post
Replies
7
Views
1K
Top