MHB Eigenvectors of 2*2 rotation matrix

bugatti79
Messages
786
Reaction score
4
Hi Folks,

I calculate the eigenvalues of \begin{bmatrix}\cos \theta& \sin \theta \\ - \sin \theta & \cos \theta \end{bmatrix} to be \lambda_1=e^{i \theta} and \lambda_2=e^{-i \theta}

for \lambda_1=e^{i \theta}=\cos \theta + i \sin \theta I calculate the eigenvector via A \lambda = \lambda V as

\begin{bmatrix}\cos -(\cos \theta+ i \sin \theta) & \sin \theta \\ - \sin \theta & \cos -(\cos \theta+ i \sin \theta)\end{bmatrix} \begin{bmatrix}v_1\\ v_2\end{bmatrix}=\vec{0}

which reduces to

- i \sin \theta v_1+ \sin \theta v_2=0
-\sin \theta v_1-i \sin \theta v_2=0

I am stumped at this point...how shall I proceed?
 
Physics news on Phys.org
bugatti79 said:
Hi Folks,

I calculate the eigenvalues of \begin{bmatrix}\cos \theta& \sin \theta \\ - \sin \theta & \cos \theta \end{bmatrix} to be \lambda_1=e^{i \theta} and \lambda_2=e^{-i \theta}

for \lambda_1=e^{i \theta}=\cos \theta + i \sin \theta I calculate the eigenvector via A \lambda = \lambda V as

\begin{bmatrix}\cos -(\cos \theta+ i \sin \theta) & \sin \theta \\ - \sin \theta & \cos -(\cos \theta+ i \sin \theta)\end{bmatrix} \begin{bmatrix}v_1\\ v_2\end{bmatrix}=\vec{0}

which reduces to

- i \sin \theta v_1+ \sin \theta v_2=0
-\sin \theta v_1-i \sin \theta v_2=0

I am stumped at this point...how shall I proceed?
Divide those equations by $\sin\theta$ (assuming that $\sin\theta\ne0$).
 
Opalg said:
Divide those equations by $\sin\theta$ (assuming that $\sin\theta\ne0$).

Then we get

- i v_1+ v_2=0 (1)
- v_1-i v_2=0 (2)

v_2=i v_1 from 1

v_2=-v_1/i from 2

1) These contradict? How is the eigenvector obtained from this?

2) what if we have a situation where \theta=0? Then \sin \theta=0
 
bugatti79 said:
Then we get

- i v_1+ v_2=0 (1)
- v_1-i v_2=0 (2)

v_2=i v_1 from 1

v_2=-v_1/i from 2

1) These contradict? How is the eigenvector obtained from this?

2) what if we have a situation where \theta=0? Then \sin \theta=0
1) They don't contradict, because $i^2=-1$ and so $-1/i = i$.

2) If $\theta=0$ then the matrix becomes $\begin{bmatrix}1&0 \\0&1 \end{bmatrix}$ (the identity matrix), with a repeated eigenvalue $1$.
 
Opalg said:
1) They don't contradict, because $i^2=-1$ and so $-1/i = i$.

2) If $\theta=0$ then the matrix becomes $\begin{bmatrix}1&0 \\0&1 \end{bmatrix}$ (the identity matrix), with a repeated eigenvalue $1$.

1) Ok, so the eigenvector for

\lambda_1=e^{i \theta} is \begin{bmatrix}1\\ i\end{bmatrix}

and

\lambda_2=e^{-i \theta} is \begin{bmatrix}1\\ 1/i\end{bmatrix}

To show these 2 vectors are orthogonal I get the inner product

<v_1,v_2>=(1*1)+(i*1/i)\ne 0 but I expect 0...?
 
bugatti79 said:
1) Ok, so the eigenvector for

\lambda_1=e^{i \theta} is \begin{bmatrix}1\\ i\end{bmatrix}

and

\lambda_2=e^{-i \theta} is \begin{bmatrix}1\\ 1/i\end{bmatrix}

To show these 2 vectors are orthogonal I get the inner product

<v_1,v_2>=(1*1)+(i*1/i)\ne 0 but I expect 0...?
The definition of the inner product of two complex vectors is that you have to take the complex conjugate of the second one: if $x = ( x_1,x_2)$ and $y = (y_1,y_2)$ then $\langle x,y\rangle = x_1\overline{y_1} + x_2\overline{y_2}.$
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
Replies
33
Views
1K
Replies
13
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
22
Views
4K
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K