MHB Eigenvectors of 2*2 rotation matrix

bugatti79
Messages
786
Reaction score
4
Hi Folks,

I calculate the eigenvalues of \begin{bmatrix}\cos \theta& \sin \theta \\ - \sin \theta & \cos \theta \end{bmatrix} to be \lambda_1=e^{i \theta} and \lambda_2=e^{-i \theta}

for \lambda_1=e^{i \theta}=\cos \theta + i \sin \theta I calculate the eigenvector via A \lambda = \lambda V as

\begin{bmatrix}\cos -(\cos \theta+ i \sin \theta) & \sin \theta \\ - \sin \theta & \cos -(\cos \theta+ i \sin \theta)\end{bmatrix} \begin{bmatrix}v_1\\ v_2\end{bmatrix}=\vec{0}

which reduces to

- i \sin \theta v_1+ \sin \theta v_2=0
-\sin \theta v_1-i \sin \theta v_2=0

I am stumped at this point...how shall I proceed?
 
Physics news on Phys.org
bugatti79 said:
Hi Folks,

I calculate the eigenvalues of \begin{bmatrix}\cos \theta& \sin \theta \\ - \sin \theta & \cos \theta \end{bmatrix} to be \lambda_1=e^{i \theta} and \lambda_2=e^{-i \theta}

for \lambda_1=e^{i \theta}=\cos \theta + i \sin \theta I calculate the eigenvector via A \lambda = \lambda V as

\begin{bmatrix}\cos -(\cos \theta+ i \sin \theta) & \sin \theta \\ - \sin \theta & \cos -(\cos \theta+ i \sin \theta)\end{bmatrix} \begin{bmatrix}v_1\\ v_2\end{bmatrix}=\vec{0}

which reduces to

- i \sin \theta v_1+ \sin \theta v_2=0
-\sin \theta v_1-i \sin \theta v_2=0

I am stumped at this point...how shall I proceed?
Divide those equations by $\sin\theta$ (assuming that $\sin\theta\ne0$).
 
Opalg said:
Divide those equations by $\sin\theta$ (assuming that $\sin\theta\ne0$).

Then we get

- i v_1+ v_2=0 (1)
- v_1-i v_2=0 (2)

v_2=i v_1 from 1

v_2=-v_1/i from 2

1) These contradict? How is the eigenvector obtained from this?

2) what if we have a situation where \theta=0? Then \sin \theta=0
 
bugatti79 said:
Then we get

- i v_1+ v_2=0 (1)
- v_1-i v_2=0 (2)

v_2=i v_1 from 1

v_2=-v_1/i from 2

1) These contradict? How is the eigenvector obtained from this?

2) what if we have a situation where \theta=0? Then \sin \theta=0
1) They don't contradict, because $i^2=-1$ and so $-1/i = i$.

2) If $\theta=0$ then the matrix becomes $\begin{bmatrix}1&0 \\0&1 \end{bmatrix}$ (the identity matrix), with a repeated eigenvalue $1$.
 
Opalg said:
1) They don't contradict, because $i^2=-1$ and so $-1/i = i$.

2) If $\theta=0$ then the matrix becomes $\begin{bmatrix}1&0 \\0&1 \end{bmatrix}$ (the identity matrix), with a repeated eigenvalue $1$.

1) Ok, so the eigenvector for

\lambda_1=e^{i \theta} is \begin{bmatrix}1\\ i\end{bmatrix}

and

\lambda_2=e^{-i \theta} is \begin{bmatrix}1\\ 1/i\end{bmatrix}

To show these 2 vectors are orthogonal I get the inner product

<v_1,v_2>=(1*1)+(i*1/i)\ne 0 but I expect 0...?
 
bugatti79 said:
1) Ok, so the eigenvector for

\lambda_1=e^{i \theta} is \begin{bmatrix}1\\ i\end{bmatrix}

and

\lambda_2=e^{-i \theta} is \begin{bmatrix}1\\ 1/i\end{bmatrix}

To show these 2 vectors are orthogonal I get the inner product

<v_1,v_2>=(1*1)+(i*1/i)\ne 0 but I expect 0...?
The definition of the inner product of two complex vectors is that you have to take the complex conjugate of the second one: if $x = ( x_1,x_2)$ and $y = (y_1,y_2)$ then $\langle x,y\rangle = x_1\overline{y_1} + x_2\overline{y_2}.$
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top