Einstein-scalar field action -> Einstein-scalar field equations

bookworm_vn
Messages
9
Reaction score
0
Einstein-scalar field action --> Einstein-scalar field equations

Dear friends,

Just a small question I do not know how to derive.

From the Einstein-scalar field action defined by

S\left( {g,\psi } \right) = \int_{} {\left( {R(g) - \frac{1}{2}\left| {\nabla \psi } \right|_g^2 - V\left( \psi \right)} \right)d{\eta _g}}

one gets the so-called Einstein-scalar field equations given by

{\rm Eins}_{\alpha \beta} = {\nabla _\alpha }\psi {\nabla _\beta }\psi - \frac{1}{2}{g_{\alpha \beta }}{\nabla _\mu }\psi {\nabla ^\mu }\psi - {g_{\alpha \beta }}V(\psi ).

My question is how to derive such equations. It seems that we need to take derivative... but how? Thanks.
 
Physics news on Phys.org


you will find this derivation in most test books on GR, you can derive it by varying
the action and requiring that the functional remain constant i.e that the functional is zero
are you familar with functionals? one must take the functional w.r.t the metric itself
it is actually easier to take the functional w.r.t the metric in [1,1] form, thus write the
other components in term of this
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top