Electric field a distance z above flat circular disk.

  • Thread starter -Dragoon-
  • Start date
  • #1
309
7

Homework Statement


Find the electric field a distance above the center of a flat circular disk of radius R, which carries a uniform surface charge σ.



Homework Equations





The Attempt at a Solution


Basically, I want to solve this usually trivial problem without using symmetry arguments and the superposition principle but rather the more laborious method introduced in Griffith's section 2.1. Hence:

[itex]\vec{E(r)} = \frac{1}{4\pi\epsilon_{0}}\int\frac{\sigma(r)}{r'^2}\hat{r'}da[/itex]

Where [itex]\hat{r'} = \frac{z\hat{z} - r\hat{r}}{\sqrt{z^2+r^2}}[/itex] and [itex]r' = \sqrt{r^2 + z^2}[/itex], thus:

[itex]\vec{E(r)} = \frac{\sigma}{4\pi\epsilon_{0}}\int\frac{z\hat{z} - r\hat{r}}{(z^2 + r^2)^{3/2}}da[/itex]

Converting to polar coordinates we have:
[itex]\vec{E(r)} = \frac{\sigma}{4\pi\epsilon_{0}}\iint\frac{z\hat{z} - r\hat{r}}{(z^2 + r^2)^{3/2}}rdrd\theta[/itex]

=> [itex]\frac{\sigma}{4\pi\epsilon_{0}}\int_0^{2\pi}\int_0^r\frac{z\hat{z} - r\hat{r}}{(z^2 + r^2)^{3/2}}rdrd\theta[/itex]
Which gives:
[itex]\frac{\sigma2\pi}{4\pi\epsilon_{0}}[z\hat{z}\int_0^r\frac{r}{(z^2 + r^2)^{3/2}}dr - \int_0^r\frac{r^2\hat{r}}{(z^2 + r^2)^{3/2}}dr][/itex]

Evaluating the first integral gives me the correct answer for the electric field:
[itex]\frac{\sigma2\pi z}{4\pi\epsilon_{0}}[- \frac{1}{\sqrt{z^2+r^2}}\Big|_0^r]\hat{z}[/itex]

Which means, the second integral must be zero: [itex]\int_0^r\frac{r^2\hat{r}}{(z^2 + r^2)^{3/2}}dr = 0[/itex]

Except I am not exactly sure on how to show that is the case. The radial unit vector seems to be the problematic term, and it cannot be simply taken outside the integral. Would like to have some help and insights on this, thanks.
 
Last edited:

Answers and Replies

  • #2
TSny
Homework Helper
Gold Member
12,960
3,315
Go back and think about the ##\theta## integration in the expression $$\iint\frac{ r\hat{r}}{(z^2 + r^2)^{3/2}}rdrd\theta$$ Note that ##\hat{r}## is not a constant when integrating over ##\theta##.
 
  • Like
Likes 1 person
  • #3
309
7
Go back and think about the ##\theta## integration in the expression $$\iint\frac{ r\hat{r}}{(z^2 + r^2)^{3/2}}rdrd\theta$$ Note that ##\hat{r}## is not a constant when integrating over ##\theta##.
Ah, I see. Thanks. Is then ##\hat{r}## a constant when integrating with respect to ##r## then?
 
Last edited:
  • #4
TSny
Homework Helper
Gold Member
12,960
3,315
Yes. If you integrate over ##r## first, then you are keeping ##\theta## constant. So, the unit vector ##\hat{r}## has a fixed direction.
 
  • Like
Likes 1 person

Related Threads on Electric field a distance z above flat circular disk.

Replies
3
Views
1K
Replies
9
Views
607
Replies
4
Views
135
  • Last Post
Replies
1
Views
4K
Replies
11
Views
3K
  • Last Post
Replies
3
Views
9K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
1
Views
7K
Replies
79
Views
6K
Top