Sorry, but I feel the need to jump in here.
The problem statement is poorly worded. For one, it doesn't specify the nature of the charge distribution over the rod and cylinder.
We can assume that the respective charges are uniformly distributed along the lengths of the rod and cylinder, but that is an assumption on our part: something the original problem statement should have specified.
We can assume that the problem statement is asking for the electric field 15 meters above the centers of the rod/cylinder combination. But the problem statement does not specify above the center. That would be another assumption made on our part.
"The rod is uniformly placed inside the center of the hollow cylinder." What the heck does that mean? As opposed to non uniformly? I don't even know what that's trying to say.
It is not possible to use Gauss' law to to precisely find the electric field for this problem. Gauss's law still holds of course, it's just not possible to use it to find the electric field unless certain conditions are met. For situations involving cylindrical charge distribution, the cylinders/rods must be infinitely long in length if you want to use Gauss' law to find the electric field. If you really want to find the electric field for this problem precisely, you'll have to use integration.
That said, it is possible to approximate the electric field using Gauss' law, and using all the assumptions that we made such as uniform charge distribution, electric field 15 m above the center of the rod/cylinder combination, etc. It's a valid approximation if the height above the center of charge is much, much smaller than the length. (Is 15 m << 50 m? That's kind of a stretch if you ask me.) It would have been nice if the problem statement said to approximate the electric field using Gauss' law, but it didn't really say that. So that's one more assumption on our part.
So PhizKid, back to your original question. If you are going to use Gauss' law to approximate the electric field at 15 meters above the center of the rod/cylinder combination, and all our other assumptions are valid, then your Gaussian surface needs to be thin disk-like cylinder, 15 meters in radius, but very thin. The Gaussian surface cylinder should share the same axis and center as the charged cylinder and charged rod. Assume that all electric field lines exit the Gaussian cylinder at the thin strip at its perimeter, and no electric field lines exit the Gaussian surface through its large, disk-shaped sides.
[Edit: this Gaussian surface that I described is equivalent to making a different assumption that the 50 m rod and cylinder is just part of a much larger coaxial, charged rod and cylinder. In both cases, the important part of the approximation is to assume that all electric field lines go through the curved part of the Gaussian surface cylinder, and no electric field lines go through the circular caps.]