Electric field between parallel plates

Click For Summary
The discussion focuses on the electric field between parallel plates of a capacitor, emphasizing that each plate carries opposite charges, with one plate having a surface charge density of σ and the other -σ. It raises questions about the nature of charge distribution on the plates and the presence of negative charges in a static electric field scenario. The electric field outside a single conducting plate is described by the equation E = σ/ε, while the field between two plates is derived using the superposition principle. The conversation highlights a fundamental misunderstanding regarding the application of these principles to capacitors. Overall, the interaction of electric fields in capacitors is crucial for understanding their behavior in static situations.
lys04
Messages
144
Reaction score
5
Homework Statement
The electric field outside a conducting plate of charge is given by sigma/epsilon right? Then why not for a capacitor, since that is 2 conducting plates, is the electric field 2sigma/epsilon using superposition principle?
Relevant Equations
E=sigma/epsilon
^^
 
Physics news on Phys.org
Here’s a cross -section through (due to space limitations, part of) an infinite conducting plate with a (say) positive charge:
___________________________
___________________________

Here are some questions to consider:
- are both surfaces charged?
- if only one (of the two) surfaces is charged, what determines which one?
- in a static situation, every ‘field line’ starts on a positive charge and ends on a negative charge; where are the negative charges here?
 
lys04 said:
Homework Statement: The electric field outside a conducting plate of charge is given by sigma/epsilon right? Then why not for a capacitor, since that is 2 conducting plates, is the electric field 2sigma/epsilon using superposition principle?
Relevant Equations: E=sigma/epsilon
Generally, the two plates of a capacitor are oppositely charged. Right?

So, if one plate has a surface charge density, ##\sigma##, then the other plate has surface charge density, ##-
\sigma##,

Now use superposition to determine the electric field outside the plates as well as between the plates.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 58 ·
2
Replies
58
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
1K
Replies
11
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K