Electric Field between Two Thin Conducting Plates

Click For Summary
SUMMARY

The discussion centers on calculating the electric field between two parallel thin conducting plates, each measuring 25.0 cm on a side and separated by 5.0 mm. The participants clarify that the number of electrons transferred should be ##10^{11}##, not ##10^{-11}##. The electric field can be derived using Gauss's law, leading to the formula ##E = \frac{ne}{A\varepsilon_{0}}## for both plates, where ##n## is the number of electrons, ##e## is the charge of an electron, and ##A## is the area of the plates. The direction of the electric field is determined by the charge distribution on the plates.

PREREQUISITES
  • Understanding of Gauss's Law in electrostatics
  • Familiarity with electric field concepts and calculations
  • Knowledge of charge density and its relation to electric fields
  • Basic algebra for manipulating equations involving electric fields
NEXT STEPS
  • Study the application of Gauss's Law in different geometries
  • Learn about electric field calculations for various charge distributions
  • Explore the concept of surface charge density in electrostatics
  • Investigate the effects of plate separation on electric field strength
USEFUL FOR

Students and educators in physics, particularly those focusing on electromagnetism, as well as engineers working with electrical systems involving capacitors and electric fields.

doggydan42
Messages
169
Reaction score
18

Homework Statement


Two thin conducting plates, each 25.0 cm on a side, are situated parallel to one another and 5.0 mm apart. If ##10^{-11}## electrons are moved from one plate to the other, what is the electric field between the plates?

Homework Equations


$$\vec E(P) = \frac{1}{4\pi {\varepsilon}_0}\int_{Surface} \frac{\sigma dA}{r^2}\hat r$$

The Attempt at a Solution


I thought of summing the electric field between the two plates, but I do not know the surface charge density ##(\sigma)##, and I do not know how to incorporate the ##10^{-11}## electrons into the equation.

Thank you in advance.
 
Last edited:
Physics news on Phys.org
Since the plate separation is much smaller than the plate size, you can consider the plates as infinite. The electric field of an infinite plate can be easily found using Gauss's law, or you could just look it up.
doggydan42 said:
I thought of summing the electric field between the two plates
Yes, use superposition to find the field of both plates.
doggydan42 said:
how to incorporate the ##10^{-11}## electrons into the equation.
You can't have less than one electron. Do you mean ##10^{11}## electrons?
 
Yes, I believe it meant ##10^{11}##, but because I'm not sure, I want to calculate with using a variable n for the number of electrons and e for the charge of an electron. I understand that I can consider infinite plates, but my main problem is finding a value for sigma.

Do you have any ideas?

Thank you in advance, and thank you for noticing the error with the number of electrons.
 
doggydan42 said:
but my main problem is finding a value for sigma.
For an infinite conducting plane, is ##\sigma## constant or not?
 
##\sigma## would be changing right? Because depending on the number of electrons that move between the plates, the charge distribution would change. So if n electrons moved they would spread of an area A over the surface, but I don't know the area that they will be over.
 
I meant is ##\sigma## a function of position or is it uniform across the plate?
doggydan42 said:
So if n electrons moved they would spread of an area A over the surface, but I don't know the area that they will be over.
You're on the right track here. If the plates are square with side length 25.0cm, then what is the area?
 
Oh, I see. So ##\sigma## would be uniform across the plate, and the area should be ##(25.0 cm)^2##. If I understand, then would this be correct?

$$\vec E = \frac{1}{4\pi {\varepsilon}_0} \frac{\sigma A}{r^2} = \frac{A}{4\pi {\varepsilon}_0 r^2}( \frac{q_2}{A}-\frac{q_1}{A}) = \frac{ne}{4\pi {\varepsilon}_0 r^2}$$

r would be the distance between the plates, so 5.0 mm, ne would be the charge of n electrons. ##q_1## and ##q_2## would be the charges of the plates, and ##A=(25.0 cm)^2##

If that's right, should it be a negative or positive electric field?

Thank you
 
doggydan42 said:
Oh, I see. So ##\sigma## would be uniform across the plate, and the area should be ##(25.0 cm)^2##.
Yes
doggydan42 said:
If I understand, then would this be correct?

$$\vec E = \frac{1}{4\pi {\varepsilon}_0} \frac{\sigma A}{r^2} = \frac{A}{4\pi {\varepsilon}_0 r^2}( \frac{q_2}{A}-\frac{q_1}{A}) = \frac{ne}{4\pi {\varepsilon}_0 r^2}$$
##r## is not constant in the integral, so it can't be factored out. Again, I would recommend finding ##\mathbf{E}## using Gauss's law since actually integrating over the position ##r## will be tricky.
doggydan42 said:
should it be a negative or positive electric field?
It depends how the coordinate system is set up. Remember ##\mathbf{E}## points away from positive charge and towards negative charge.
 
NFuller said:
rr is not constant in the integral, so it can't be factored out. Again, I would recommend finding E\mathbf{E} using Gauss's law since actually integrating over the position rr will be tricky.

If I were to use Gauss's Law, would I use the following equation?

$$\frac{Q}{\varepsilon_0}=\oint_{Surface} \vec E \dot \,dA \Rightarrow \frac{ne}{\varepsilon_0}=\oint_{Surface} \vec E \dot \,dA$$

Or would it be an open surface? If ##Q \neq ne##, then how would a value for Q be calculated?

Thank you.
 
  • #10
It is always a closed surface. You can use the surface of a rectangular prism or a cylinder as the Gaussian surface.
 
  • #11
NFuller said:
It is always a closed surface. You can use the surface of a rectangular prism or a cylinder as the Gaussian surface.

So then:

$$\frac{Q}{\varepsilon_0}=\oint_{Surface} \vec E \dot \,dA \Rightarrow \frac{\sigma A}{\varepsilon_0}=\oint_{Surface} \vec E \dot \,dA = A \vec E \Rightarrow \frac{\sigma}{\varepsilon_0} = \vec E = \frac{ne}{A\varepsilon_0}$$

Or does ##\sigma \neq \frac{ne}{A}##? If not, then how should I go about finding ##\sigma##?

Thank you.
 
  • #12
doggydan42 said:
So then:

$$\frac{Q}{\varepsilon_0}=\oint_{Surface} \vec E \dot \,dA \Rightarrow \frac{\sigma A}{\varepsilon_0}=\oint_{Surface} \vec E \dot \,dA = A \vec E \Rightarrow \frac{\sigma}{\varepsilon_0} = \vec E = \frac{ne}{A\varepsilon_0}$$

Or does ##\sigma \neq \frac{ne}{A}##? If not, then how should I go about finding ##\sigma##?

Thank you.
Remember there are two surfaces with area ##A## for the Gaussian surface, one above the plane and one below. So your answer is nearly right but off by a factor 1/2.
$$E=\frac{ne}{2A\epsilon_{0}}$$
This is the magnitude of the electric field produced by one of the planes.
 
  • #13
NFuller said:
Remember there are two surfaces with area ##A## for the Gaussian surface, one above the plane and one below. So your answer is nearly right but off by a factor 1/2.
$$E=\frac{ne}{2A\epsilon_{0}}$$
This is the magnitude of the electric field produced by one of the planes.

So if I want to find the electric field between both plates, would I not sum it to become ##\vec E=\frac{ne}{A\epsilon_{0}}##?
 
  • #14
doggydan42 said:
So if I want to find the electric field between both plates, would I not sum it to become ##\vec E=\frac{ne}{A\epsilon_{0}}##?
For both plates, you sum it and the 1/2 factor goes away. I wasn't sure which step you were on in post #11.
 
  • #15
NFuller said:
For both plates, you sum it and the 1/2 factor goes away. I wasn't sure which step you were on in post #11.

Okay that makes sense, but how would I determine the direction of the electric field?
Since the charge is negative, that means the electric field is negative. If both planes are parallel to the y-axis and perpendicular to the x-axis, then does that mean the electric field is going in the ##-\hat j## direction?
 
  • #16
It depends how your diagram is laid out. One of the plates is negative but the other is positive. So if you draw a vector pointing from the positive plate to the negative plate, in which direction does it point?
 
  • #17
Okay. Thank you so much for your help, I think I was able to get a better idea of how to solve these problems, and am able to conceptualize them better.
 

Similar threads

Replies
7
Views
2K
Replies
4
Views
3K
Replies
6
Views
1K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
6K