Electric field due to a charged ring off-axis

Click For Summary
To find the electric field due to a charged ring off-axis, one must first calculate the potential (phi) along the axis. This involves expanding phi in a Taylor series based on the position relative to the ring. The Legendre polynomial expansion is then applied to express phi for all angles. The electric field (E) is obtained by taking the gradient of phi. While the calculations for two parallel ring electrodes are more complex, they can be performed using similar methods.
a789irfan
Messages
4
Reaction score
0
How can i find the electric field due to a charged ring off-axis? Actually i have two ring electrodes in parallel and i would like to know how to find the electric field at any point in between the ring electrodes?
 
Physics news on Phys.org
This is treated in advanced EM texts.
The steps for one ring are:
1. Find phi on ths axis.
2. Expand phi in a Taylor series for either z>a or z<a.
3. Use this expansion to write the Legendre polynomial expansion for all
angle. Use phi=\sum r^L P_L(cos\theta) (or 1/r^{L+1}).
4. Take grad phi to get E.
The result is a bit messy for two rings, but it can be done.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
544
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K