Electric field of an infinite charged plate

Click For Summary
SUMMARY

The discussion centers on calculating the electric field at the point (4,4,0) due to an infinite charged plate and a negatively charged particle. The electric field from the particle is calculated as -1125 N/C, while the electric field from the plate is derived using the formula E = σ/(2ε₀), yielding 4519.77 N/C. The confusion arises from the interpretation of the plate's charge density and whether it affects both sides, which could double the effective charge density. The final resultant electric field is determined through vector addition of the two fields.

PREREQUISITES
  • Understanding of electric fields and vector addition
  • Familiarity with Coulomb's Law and the concept of charge density
  • Knowledge of the formula for electric fields due to infinite charged planes
  • Basic calculus for integration in electric field calculations
NEXT STEPS
  • Review the derivation of the electric field from an infinite charged plane using E = σ/(2ε₀)
  • Study vector addition of electric fields to understand resultant field calculations
  • Explore the implications of charge density on electric field strength in different geometries
  • Learn about the effects of multiple charge distributions on electric fields
USEFUL FOR

Students of electromagnetism, physicists, and engineers involved in electric field analysis and charge distribution problems.

  • #31
jisbon said:
Oh.. my bad. So its:

##E_{(4,4,0)}=E_{plate} + E_{particle} = (4519.77\widetilde{x})N/C +(-1125\widetilde{y})N/C##?
Yes.
 
Physics news on Phys.org
  • #32
haruspex said:
Yes.
I've calculated the magnitude and it appears to be 4657, which is different from the given answer, which is 9109 :/
 
  • #33
I think your answer is correct if the infinite plate has only one face with charge density ##\sigma##. However, if they meant the plate has two faces, each face having charge density 8 x 10-8 C/m2, then you would get their answer. If this latter interpretation is what they meant, then I misled you with the diagram in post #2. Sorry about that.
 
Last edited:
  • #34
TSny said:
I think your answer is correct if the infinite plate has only one face with charge density ##\sigma##. However, if they meant the plate has two faces, each face having charge density 8 x 10-8 C/m2, then you would get their answer. If this latter interpretation is what they meant, then I misled you with the diagram in post #2. Sorry about that.
Hmm okay. So if it has two faces, is there now supposed to be a negative x direction now? Not sure how to proceed
 
  • #35
jisbon said:
Hmm okay. So if it has two faces, is there now supposed to be a negative x direction now? Not sure how to proceed
If there is a given charge density on an infinite plate then the flux lines go equally from both sides. So the field strength is half what it would be if all the flux lines emerged from the same side. This leads to the factor ##\frac 12## in the formula.
But in this problem there is an ambiguity. It gives the "surface" charge density. Since a plate has two surfaces, they might mean that each surface has that density.
 
  • #36
haruspex said:
If there is a given charge density on an infinite plate then the flux lines go equally from both sides. So the field strength is half what it would be if all the flux lines emerged from the same side. This leads to the factor ##\frac 12## in the formula.
But in this problem there is an ambiguity. It gives the "surface" charge density. Since a plate has two surfaces, they might mean that each surface has that density.

So if I'm following what you are saying, won't dividing the field strength by plate by 2 make the magnitude even smaller?

In which: ##E_{(4,4,0)}=E_{plate} + E_{particle} = (4519.77/2 \widetilde{x})N/C +(-1125\widetilde{y})N/C##

Even if it's the other scenario (whereby I multiply by 2), the magnitude of the Efield is still 9107.7N/C , which is due to some form of rounding up/down I presume?
 
  • #37
jisbon said:
won't dividing the field strength by plate by 2 make the magnitude even smaller?
No, you already did that divide by 2 in your post #3 to arrive at 4519... Look at the equation you used there.
I am saying that if the question means the given charge density exists on both sides of the plate then there is in effect twice the charge density, so the 1/2 should not be in the.formula.
 
  • #38
haruspex said:
No, you already did that divide by 2 in your post #3 to arrive at 4519... Look at the equation you used there.
I am saying that if the question means the given charge density exists on both sides of the plate then there is in effect twice the charge density, so the 1/2 should not be in the.formula.
Oh ok.

But even if I don't divide it by 2,

jisbon said:
Even if it's the other scenario (whereby I multiply by 2), the magnitude of the Efield is still 9107.7N/C , which is due to some form of rounding up/down I presume?

Maybe an rounding off error or?
 
  • #39
jisbon said:
Oh ok.

But even if I don't divide it by 2,
Maybe an rounding off error or?
Using your numbers for the two components I get 9209.
What is the supposed answer?
 
  • #40
haruspex said:
Using your numbers for the two components I get 9209.
What is the supposed answer?
9109
 
  • #41
jisbon said:
9109
Possibly a typo.
 
  • #42
I happened to notice that you get 9109 N/C for E if you use ##\epsilon_0 = 8.85 \times 10^{-12}## and ##k = \frac{1}{4 \pi \epsilon_0}##. But this is kind of silly as it rounds ##\epsilon_0## to 3 significant figures in order to try to get an answer accurate to 4 sig figs! And the data is given to only 1 sig fig.
 
  • #43
TSny said:
I happened to notice that you get 9109 N/C for E if you use ##\epsilon_0 = 8.85 \times 10^{-12}## and ##k = \frac{1}{4 \pi \epsilon_0}##. But this is kind of silly as it rounds ##\epsilon_0## to 3 significant figures in order to try to get an answer accurate to 4 sig figs! And the data is given to only 1 sig fig.
haruspex said:
Possibly a typo.
Ah alright. Guess it's probably an accuracy error then.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
3K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
990
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K