Pushoam
- 961
- 53
kuruman said:So what is the argument that says that the picture as shown below cannot be the case? Try to be as specific as you can.
Using ## \oint \vec E \cdot d \vec l =0 ## for the closed loop ABCA shown in the figure, where the part AB inside the cavity is along the direction of electric field, to calculate the magnitude of ## \vec E## inside the cavity, $$\oint \vec E \cdot d \vec l =0 $$$$ \int_A^B \vec E \cdot d \vec l + {\int_B^A }_{through~ C} \vec E \cdot d \vec l = 0$$$$ \int_A^B \vec E \cdot d \vec l = -{\int_B^A }_{~ through~ C} \vec E \cdot d \vec l $$
Now, ## {\int_B^A }_{through~ C} \vec E \cdot d \vec l = 0## as electric field inside the meat of conducting shell is 0.
Hence, $$ \int_A^B \vec E \cdot d \vec l = -{\int_B^A }_{through~ C} \vec E \cdot d \vec l = 0 ... (1)$$ As the part AB inside the cavity is along the direction of electric field, $$ \int_A^B \vec E \cdot d \vec l =\int_A^B E dl =0 $$$$\Rightarrow E = 0 \Rightarrow \vec E = \vec 0 $$
Hence, the above calculation and precisely, ## \oint \vec E \cdot d \vec l =0## says that there can be no electric field inside the shell.
Last edited: