Electric Potential of a Point Charge close to R=0

Click For Summary
SUMMARY

The discussion centers on the 3D representation of voltage generated by a positive point charge using the equation V(r) = kq/r. Participants clarify that the graph should depict a hill-like structure, approaching infinity as the radius (r) approaches zero. The correct Cartesian form for the voltage is z = kq/√(x² + y²). The conversation also explores the implications of this graph in terms of potential energy and the behavior of charged particles in proximity to the point charge.

PREREQUISITES
  • Understanding of electric potential and voltage concepts
  • Familiarity with the equation V(r) = kq/r
  • Knowledge of Cartesian and cylindrical coordinate systems
  • Basic principles of electrostatics and charge interactions
NEXT STEPS
  • Explore the derivation of electric potential in different coordinate systems
  • Study the behavior of charged particles in electric fields
  • Learn about the concept of equipotential surfaces and their applications
  • Investigate the relationship between electric potential and potential energy
USEFUL FOR

This discussion is beneficial for physics students, educators, and anyone interested in understanding electric potential, particularly in the context of electrostatics and point charges.

Craig Scott
Messages
10
Reaction score
2

Homework Statement



What is a 3D representation of voltage using Kq/r assuming a positive point charge and what is the equation in cartesian and cylindrical form2. Relavent equations
Kq/r

3. Attempt at solution[/B]
I was trying to get a better understanding of Voltage, to really FEEL voltage... So I drew a graph of a 3D depiction of what I believed to be the representation of a +q point charge. It's pretty much a hill where the max is where the voltage is highest assuming the point charge is positive and levels off asymptotically at 0 as r increases.

Is this a correct graph? Because if voltage increases as a radius decreases for a positive point charge, shouldn't the voltage move to infinity as you get closer and closer to the positive point charge?

So the graph should really be a |1/x| with both sides approaching infinity instead of a |1/x| with a curved top with a maximum?

Then I wanted to know the equation of the 3D surface generated. How do I convert V(r) = kq/r to a 3d surface?
For cartesian for I'm guessing just Kq / root(x^2 + y^2)

Are there any possible applications of understanding the 3D graph of voltage of a point charge?
 
Physics news on Phys.org
1. Yes the graph is assumed is correct with asymptote at x=0,y=0

2. The graph will not have a curved top. It will approach to infinity at x=0,y=0
3. As you said 3d equation seems obviously to be z = \frac{ kq}{\sqrt{ { x}^{2}+{ y}^{2}}}

4. A possible application would be finding out the distance of closest approach of a +ve charged particle approaching the +ve charge in question, assuming the positive charge in question is fixed. Consider a simulation where approaching charge is a particle (or a ball with very small radius ie almost zero moment of inertia) thrown in towards with tip of cliff (which is actually at infinity) with its velocity parallel to surface on which the ball is.

electric potential analogy.png
a) There will also be a direct analogy between velocity of particle in the simulation at any position x,y and velocity of approaching charge in original ques.

b) There will be no direct analogy between time particle/ball takes to cover distance between x1,y1 to x2,y2 and time charged particle takes to cover distance between x1,y1 to x2,y2. This will be due to the fact that particle/ball will be traveling in z direction also and thus will take more time comparatively.

c) If the approaching charged particle is not thrown exactly towards the fixed charged particle then this simulation will not work. And there are many reasons to it. First being the traversal in z direction of the ball/particle. Second the total force hill and gravity applies on the particle has component in z direction. Even in the ball case angular momentum about the center of hill is not conserved (whereas the angular momentum of approaching charged particle was conserved about the fixed charged particle in the original case)
 
Good explanation. I most likely didn't completely understand all of it, but I got the main jist of 4a and above... the ball rolling towards the edge of the cliff makes sense but in this case it does not apply correct? Because if a positive q+ charge approaches the stationary +q charge, it is really going up a "hill" doing work to approach the stationary q+ point charge.. The only reason I'm saying that is because this graph assumes that the charge approaching is positive bc it's usually what most base equations and circumstances assume.How does the derivative of kq/r relate to the graph? dV/dr = -kq/r^2 or approx = -kq / (x^2 + y^2)
Why does it seem that the slope is always negative for the graph which isn't true in this case?
This would only be true if the derivative were taken of the absolute value of |kq/r|

Why does the equipotential 3D graph we create represent the absolute value of kq/r where as kq/r itself doesn't matter?
Is it because in polar form or cylindrical coordinates, r doesn't denote direction, just magnitude? So this means there must be a θ involved in the original kq/r equation correct?
 
Craig Scott said:
Good explanation. I most likely didn't completely understand all of it, but I got the main jist of 4a and above... the ball rolling towards the edge of the cliff makes sense but in this case it does not apply correct? Because if a positive q+ charge approaches the stationary +q charge, it is really going up a "hill" doing work to approach the stationary q+ point charge.. The only reason I'm saying that is because this graph assumes that the charge approaching is positive bc it's usually what most base equations and circumstances assume.

In my explanation, I clearly stated this assumption (ie moving charge is assumed positive).
However if you want to draw the same analogy for a negative charge then just change z to -z ie replace cliff to something like a well.
Craig Scott said:
How does the derivative of kq/r relate to the graph? dV/dr = -kq/r^2 or approx = -kq / (x^2 + y^2)
Why does it seem that the slope is always negative for the graph which isn't true in this case?
This would only be true if the derivative were taken of the absolute value of |kq/r|

I am not sure what you mean here. But please check if you are not making the mistake of taking the direction of r wrong.
when you say that dV/dr = -kq/r^2 then dir of r is assumed to be along the line joining the fixed charge to moving charge and in that case dV/dr and slope both are -ve. And the vice versa is also true.
Craig Scott said:
Why does the equipotential 3D graph we create represent the absolute value of kq/r where as kq/r itself doesn't matter?
Is it because in polar form or cylindrical coordinates, r doesn't denote direction, just magnitude? So this means there must be a θ involved in the original kq/r equation correct?
Didn't get you. Please elaborate.
 
The graph of kq/r in the x-y plane lies in the 1st and 3rd quadrant. By making the equation |kq/r| It restricts the equation to the first and second quadrant.
14.1.r.6.gif
this is the equation 1/r, by making it |1/r| it would restrict the graph to y>0 or voltage > 0 because it is a positive point charge.

I am asking, why does kq/r create a different graph where the absolute value of kq/r is what we really want? I believe it is because the radius value is a MAGNITUDE, there are no negative radius per se.

The reason I wanted to take the derivative of |kq/r| was to find a relationship between the directional derivative of the graph and the voltage, possibly slope denoting direction or potential energy because putting in a +q or -q in the numerator would change the slope of the graph correct?

so then the equation should really be kq/|r| in terms of the graph. I guess I'm confused finding the cylindrical equation for the graph.

I got Du V(x,y) = kqx/(x2+y2)3/2*cosθ + kqy/(x2+y2)3/2*sinθ

and dV/dr = kq/r * 1/|r|
 
Last edited:
The whole problem lies when you say that potential is defined as kq/r (here r is distance) and tries to plot r on -ve x axis
Lets be clear on what parameter you choose to represent on x-axis.

a) If you represent distance on x-axis then curve will never lie in 2nd or 3rd quadrant as distance can never be -ve.

b) If you represent position of point on x-axis then the curve we get is in 1st and 2nd quadrant.
Assuming a simple case of 1d (ie plotting for all points lying on x-axis)
Here y-axis represents potential of a point x-axis represents x co-ordinate of the point.

Please feel free to ask for clarification where you have a doubt.
 
I agree with your statement a) which is why I believed you must put kq/ |r| because the r represents the magnitude, there isn't a negative r direction which would cause the original kq/r equation to not work in 3d space...

I think you are right

I am still trying to figure out the relationship of the slope of the graph with voltage and potential energy.
The derivative of kq/r is the rate of change of voltage with respect to r. If we place a point charge on those points, will the q sign alter the slope and direction of the point charge?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 22 ·
Replies
22
Views
4K
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
918
Replies
8
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K