Hi!(adsbygoogle = window.adsbygoogle || []).push({});

It's possible to construct a electromagnetic field, such that

[tex]\vec{F}:=\vec{E} + i\cdot \vec{B}[/tex].

Now the real part is the electric and the imaginary part is the magnetic field.

Then, for example, the maxwell equations take the form

[tex]\nabla \cdot \vec{F} = \rho, \qquad \rho \in \mathbb{R} [/tex]

and

[tex]\nabla\times \vec{F} - i \cdot \frac{\partial}{\partial t} \vec{F} = \vec{j}, \qquad \vec{j} \in \mathbb{R}^3 [/tex]

So, it is possible to combine electric and magnetic field intoone(complex) Field.

Now my question: Is something similar possible for the electromagnetic potentials [tex]\Phi[/tex] and [tex]\vec{A}[/tex]?

My idea is to combine the scalar and vector potential intoonequaternionic potential.

(Each quaternion consists of an scalar part and an vector part, so somehow it seems possible...)

If possible: How do the field equations look like with such an potential?

Or is there a different possibility to "unify" these two potentials?

Thanks,

David

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Electrodynamics: quaternionic potential?

**Physics Forums | Science Articles, Homework Help, Discussion**