- #1
Salmone
- 101
- 13
To calculate the Hamiltonian of a charged particle immersed in an electromagnetic field, one calculates the Lagrangian with Euler's equation obtaining ##L=\frac{1}{2}mv^2-e\phi+e\vec{v}\cdot\vec{A}## where ##\phi## is the scalar potential and ##\vec{A}## the vector potential, and then we go to the Hamiltonian by calculating the conjugate momentum which is ##\vec{p}=m\vec{v}+e\vec{A}## obtaining ##H=\frac{1}{2m}(\vec{p}-e\vec{A})^2 +e\phi##. In the case of a particle immersed in a constant magnetic field ##\vec{B}=(0,0,B)## the Hamiltonian is ##H=\frac{1}{2m}(\vec{p}-e\vec{A})^2##, but how is this obtained? Do you go directly from the ##H## in the EM field or do you compute the Lagrangian from zero?