Electron moving in an electromagnetic field and rotation operator

Click For Summary
SUMMARY

The discussion centers on the time evolution of a quantum state represented by the operator ##U(\hat{\textbf{b}}, \omega t)| \phi(t) \rangle## in the context of an electromagnetic field. The user seeks clarification on how to apply the Hamiltonian operator ##H## to this state. This indicates a focus on quantum mechanics principles, particularly in relation to electromagnetic interactions and state evolution.

PREREQUISITES
  • Understanding of quantum mechanics, specifically state evolution and operators.
  • Familiarity with Hamiltonian mechanics and its role in quantum systems.
  • Knowledge of electromagnetic theory as it applies to quantum particles.
  • Experience with mathematical notation used in quantum physics, including operators and states.
NEXT STEPS
  • Research the application of the Hamiltonian operator in quantum mechanics.
  • Study the time evolution operator in quantum systems, particularly in electromagnetic fields.
  • Explore the mathematical framework of quantum state representation.
  • Learn about the interaction of charged particles with electromagnetic fields in quantum mechanics.
USEFUL FOR

Students and professionals in physics, particularly those specializing in quantum mechanics, as well as researchers exploring the dynamics of particles in electromagnetic fields.

NiRK20
Messages
2
Reaction score
0
Homework Statement
The hamiltonian for an electron in electromagnetic field plus a central potential is
$$H = \frac{1}{2m}\left[ \textbf{p} + \frac{e}{c}\textbf{A}(\textbf{x}, t) \right] ^{2} - e\Phi(\textbf{x},t) - \mu \cdot \textbf{B}(\textbf{x}, t) + V(r)$$
with the gauge ##\textbf{A} = \frac{1}{2}\textbf{B}\times \textbf{x}## and ##\Phi = 0##, the field being uniform ##\textbf{B} = B \hat{\textbf{b}}## and ##\mu = -\frac{2\mu_{B}}{\hbar}\textbf{S}##.

The problem then gives time-dependinig Schrödinger equation and says to define a new state ##| \phi(t) \rangle## such as
$$| \psi(t) \rangle = U(\hat{\textbf{b}}, \omega t)| \phi(t) \rangle$$
with ##U(\hat{\textbf{b}}, \omega t)## a rotation operator for all degrees of freedom. Finally, it asks to find a frequency ##\omega## that eliminate the effects of the magnetic field over the particle orbital movement except by a centrifuge potental proportional to ##(\textbf{b}\times \textbf{x})^{2}##.
Relevant Equations
$$i\hbar \frac{\partial}{\partial t}| \psi(t) \rangle = H | \psi(t) \rangle$$
Hello,

The idea I had was to time evolve the state ##U(\hat{\textbf{b}}, \omega t)| \phi(t) \rangle##, but I'm confused on how to operate with ##H## on such state. I Iwould be glad if anyone could point some way. Thanks!
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K