Electron moving in an electromagnetic field and rotation operator

NiRK20
Messages
2
Reaction score
0
Homework Statement
The hamiltonian for an electron in electromagnetic field plus a central potential is
$$H = \frac{1}{2m}\left[ \textbf{p} + \frac{e}{c}\textbf{A}(\textbf{x}, t) \right] ^{2} - e\Phi(\textbf{x},t) - \mu \cdot \textbf{B}(\textbf{x}, t) + V(r)$$
with the gauge ##\textbf{A} = \frac{1}{2}\textbf{B}\times \textbf{x}## and ##\Phi = 0##, the field being uniform ##\textbf{B} = B \hat{\textbf{b}}## and ##\mu = -\frac{2\mu_{B}}{\hbar}\textbf{S}##.

The problem then gives time-dependinig Schrödinger equation and says to define a new state ##| \phi(t) \rangle## such as
$$| \psi(t) \rangle = U(\hat{\textbf{b}}, \omega t)| \phi(t) \rangle$$
with ##U(\hat{\textbf{b}}, \omega t)## a rotation operator for all degrees of freedom. Finally, it asks to find a frequency ##\omega## that eliminate the effects of the magnetic field over the particle orbital movement except by a centrifuge potental proportional to ##(\textbf{b}\times \textbf{x})^{2}##.
Relevant Equations
$$i\hbar \frac{\partial}{\partial t}| \psi(t) \rangle = H | \psi(t) \rangle$$
Hello,

The idea I had was to time evolve the state ##U(\hat{\textbf{b}}, \omega t)| \phi(t) \rangle##, but I'm confused on how to operate with ##H## on such state. I Iwould be glad if anyone could point some way. Thanks!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top