Electron moving in an electromagnetic field and rotation operator

Click For Summary
The discussion centers on the time evolution of a quantum state in an electromagnetic field, specifically using the operator U(𝑏, ω𝑡) on the state |φ(t)⟩. The user expresses confusion about how to apply the Hamiltonian operator H to this state. They seek guidance on the correct approach to operate with H in this context. The focus is on understanding the mathematical framework for evolving quantum states under electromagnetic influences. Clarification on this topic would greatly assist in resolving the user's confusion.
NiRK20
Messages
2
Reaction score
0
Homework Statement
The hamiltonian for an electron in electromagnetic field plus a central potential is
$$H = \frac{1}{2m}\left[ \textbf{p} + \frac{e}{c}\textbf{A}(\textbf{x}, t) \right] ^{2} - e\Phi(\textbf{x},t) - \mu \cdot \textbf{B}(\textbf{x}, t) + V(r)$$
with the gauge ##\textbf{A} = \frac{1}{2}\textbf{B}\times \textbf{x}## and ##\Phi = 0##, the field being uniform ##\textbf{B} = B \hat{\textbf{b}}## and ##\mu = -\frac{2\mu_{B}}{\hbar}\textbf{S}##.

The problem then gives time-dependinig Schrödinger equation and says to define a new state ##| \phi(t) \rangle## such as
$$| \psi(t) \rangle = U(\hat{\textbf{b}}, \omega t)| \phi(t) \rangle$$
with ##U(\hat{\textbf{b}}, \omega t)## a rotation operator for all degrees of freedom. Finally, it asks to find a frequency ##\omega## that eliminate the effects of the magnetic field over the particle orbital movement except by a centrifuge potental proportional to ##(\textbf{b}\times \textbf{x})^{2}##.
Relevant Equations
$$i\hbar \frac{\partial}{\partial t}| \psi(t) \rangle = H | \psi(t) \rangle$$
Hello,

The idea I had was to time evolve the state ##U(\hat{\textbf{b}}, \omega t)| \phi(t) \rangle##, but I'm confused on how to operate with ##H## on such state. I Iwould be glad if anyone could point some way. Thanks!
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
821
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K