AndreiB said:
Let me clarify this a little bit. My hypothesis here (a hypothesis I would like to see tested by direct calculations or a rigurous argument) is that QM might be for classical EM (with or without some modifications) what QM is for Newtonian mechanics.
In my first reply I intended to convey that I see no theoretical contradiction between classical EM being right and the existence of quantum computers, not that it would be practical to use classical EM in this case.
This personal theory depends on ignoring all the experimental evidence to the contrary. As in your other posts, we are debating under the bizarre assumption that no experiments have been carried out that contradict classical EM.
Even something as simple as the magentic moment of the electron is different under QM than classical EM: it's approximately twice what it should be under classical EM:
https://en.wikipedia.org/wiki/Electron_magnetic_moment
Modern QM is so far beyond classical EM that it's absurd that we even debating this. Trying to pretend that classical EM could produce an alternative to QCD and the quark-model, the weak force and nuclear decay is blind personal theorising. You yourself even noted that the neutron has a magnetic moment:
AndreiB said:
The neutron is neutral in the same sense the barrier is neutral. It contains an equal number of positive and negative charges. It has a magnetic moment, too.
Where does that come from in classical EM? Where are the quarks, where is the strong force? Where is colour confinement? Those are all quantum mechanical models.
Finally, particle scattering experiments, when modeled using QT, produce different results from classical EM. The experiments have been carried out and shown that the classical Coulomb's law breaks down at high energies. Reduce the energy and the classical formulas are seen as an approximation to the quantum formulas.
These are not isolated experiments. All of high-energy physics for the last 100 years has been non-classical - all of it! The fact that you are aware of none of it is irrelevant. I'll pick one example from yesterday:
https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.110.213001
This is where modern QM physics has reached. It's 150 years beyond Maxwell. His theory was groundbreaking in 1865. But, that is the physics of 1865, not of 2021.
And don't ask: where's the evidence for this? The evidence is the entire body of 20th and 21st century experimental high-energy physics, from the photoelecetric effect, to electron diffraction, Compton scattering, particle scattering, experimental confirmation of the standard model of particle physics, the Higgs boson, and everything else.