Electrons escaping a metal surface

Click For Summary
SUMMARY

The discussion focuses on calculating the rate at which electrons escape from a metal surface, particularly under low temperature conditions where the Fermi-Dirac distribution applies. The participants derive the current density contribution from escaping electrons and establish an integral to determine the escape rate, denoted as R. Key equations include the number density of electrons and the momentum phase space volume, with emphasis on the role of electron spin allowing two electrons per momentum state.

PREREQUISITES
  • Understanding of Fermi-Dirac distribution
  • Knowledge of electron momentum and energy relations
  • Familiarity with integrals in three-dimensional momentum space
  • Concept of phase space volume in quantum mechanics
NEXT STEPS
  • Study the derivation of the Fermi-Dirac distribution in detail
  • Learn about the implications of electron spin in quantum states
  • Explore the concept of phase space in statistical mechanics
  • Investigate the effects of temperature on electron escape rates
USEFUL FOR

Physicists, materials scientists, and researchers in condensed matter physics focusing on electron behavior at metal surfaces and the implications of quantum statistics on electron escape phenomena.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Homework Statement
Electrons in a semi-infinite slab (z < 0) of metal behave as an ideal non-relativistic Fermi gas. They escape the surface if ##p_z^2/(2m) > E_F + V##, where ##E_F## is the Fermi energy and ##V## is a potential barrier - what is the current density of escaping electrons? Assume ##E_F \gg k_B T## and ##V \gg k_B T##.
Relevant Equations
N/A
In the low temperature limit ##\mu \approx E_F## and the Fermi-Dirac distribution is ##n(E) \approx g(E)/(e^{\beta(E-E_F)}+1)##. An escaping electron contributes ##\Delta j_z = -ev_z = -ep_z/m## to the current density. How can I calculate the rate that electrons escape at? I can't see how to relate ##p_z## to the Fermi-Dirac distribution (apart from ##E = p^2/(2m) = (p_x^2 + p_y^2 + p_z^2)/(2m)##, in which case I don't know what to say about the transverse component of the momentum).
 
Physics news on Phys.org
ergospherical said:
How can I calculate the rate that electrons escape at?

##g(E) \large \frac{dE}{e^{\beta(E-E_F)}+1}## gives the number density of electrons with energy between ##E## and ##E + dE##.

In terms of momentum, verify that the number density of electrons with momentum in the range ##(p_x, p_y, p_z)## to ##(p_x+dp_x, p_y+dp_y, p_z + dp_z)## is $$\frac{2}{h^3} \frac{dp_x dp_y dp_z}{e^{\beta[(p_x^2+p_y^2+p_z^2)/(2m)-E_F]}+1}$$ Use this to set up an integral that gives the rate ##R## at which electrons will escape from a unit area of the surface of the metal. $$R = \int_{??}^\infty dp_z \int_{-\infty}^\infty dp_y\int_{-\infty}^\infty dp_x \rm {\,[\, integrand \,\, left \,\, for \,\, you \, :) \,]}$$
 
  • Like
Likes   Reactions: ergospherical
Cheers. Where does the factor 2 come from? I figured that if the (momentum) phase space volume of a state is ##h^3##, then ##g(E) dE \sim d^3 p / h^3##.

Then I thought about a section of the metal with small surface area ##dA##. In time ##dt##, electrons with velocities between ##v_z## and ##v_z + dv_z## reach the surface if they are within a depth ##v_z dt##, i.e. within a volume ##(p_z/m) dt dA##. There are ##dn (p_z/m) dt dA## such electrons, where ##dn = dn(p_x,p_y,p_z)## is the number density of electrons given above. So the rate of escape per unit area, given the restriction that only ##p_z > \sqrt{2m(E_F + V)}## can escape, is \begin{align*}
R = \frac{2}{h^3 m} \int_{\sqrt{2m(E_F + V)}}^{\infty} dp_z \int_{-\infty}^{\infty} dp_y \int_{-\infty}^{\infty} dp_x \ \frac{p_z}{e^{\beta(p^2/(2m) - E_F)} + 1}
\end{align*}Does that look right to you?
 
Last edited:
ergospherical said:
Cheers. Where does the factor 2 come from? I figured that if the (momentum) phase space volume of a state is ##h^3##, then ##g(E) dE \sim d^3 p / h^3##.
Electron spin allows two electrons to be in each momentum state. This is easy to forget.

ergospherical said:
Then I thought about a section of the metal with small surface area ##dA##. In time ##dt##, electrons with velocities between ##v_z## and ##v_z + dv_z## reach the surface if they are within a depth ##v_z dt##, i.e. within a volume ##(p_z/m) dt dA##. There are ##dn (p_z/m) dt dA## such electrons, where ##dn = dn(p_x,p_y,p_z)## is the number density of electrons given above. So the rate of escape per unit area, given the restriction that only ##p_z > \sqrt{2m(E_F + V)}## can escape, is \begin{align*}
R = \frac{2}{h^3 m} \int_{\sqrt{2m(E_F + V)}}^{\infty} dp_z \int_{-\infty}^{\infty} dp_y \int_{-\infty}^{\infty} dp_x \ \frac{p_z}{e^{\beta(p^2/(2m) - E_F)} + 1}
\end{align*}Does that look right to you?
Yes. Very nice.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K