Electrons escaping a metal surface

Click For Summary

Homework Help Overview

This discussion revolves around the calculation of the rate at which electrons escape from a metal surface, focusing on the application of the Fermi-Dirac distribution and momentum considerations in a low temperature limit context.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the relationship between momentum and the Fermi-Dirac distribution, questioning how to relate momentum components to the escape rate of electrons.
  • There is a discussion about the derivation of the number density of electrons in momentum space and the setup of integrals to calculate the escape rate.
  • Some participants inquire about the origin of factors in the equations, particularly the factor of 2 related to electron spin and phase space volume.

Discussion Status

The discussion is active with participants verifying each other's reasoning and calculations. Some guidance has been provided regarding the interpretation of factors in the equations, and there is a collaborative effort to refine the integral setup for the escape rate.

Contextual Notes

Participants are working under the constraints of low temperature limits and specific assumptions about the energy and momentum of electrons. The discussion includes considerations of the phase space volume and the implications of electron spin on the calculations.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Homework Statement
Electrons in a semi-infinite slab (z < 0) of metal behave as an ideal non-relativistic Fermi gas. They escape the surface if ##p_z^2/(2m) > E_F + V##, where ##E_F## is the Fermi energy and ##V## is a potential barrier - what is the current density of escaping electrons? Assume ##E_F \gg k_B T## and ##V \gg k_B T##.
Relevant Equations
N/A
In the low temperature limit ##\mu \approx E_F## and the Fermi-Dirac distribution is ##n(E) \approx g(E)/(e^{\beta(E-E_F)}+1)##. An escaping electron contributes ##\Delta j_z = -ev_z = -ep_z/m## to the current density. How can I calculate the rate that electrons escape at? I can't see how to relate ##p_z## to the Fermi-Dirac distribution (apart from ##E = p^2/(2m) = (p_x^2 + p_y^2 + p_z^2)/(2m)##, in which case I don't know what to say about the transverse component of the momentum).
 
Physics news on Phys.org
ergospherical said:
How can I calculate the rate that electrons escape at?

##g(E) \large \frac{dE}{e^{\beta(E-E_F)}+1}## gives the number density of electrons with energy between ##E## and ##E + dE##.

In terms of momentum, verify that the number density of electrons with momentum in the range ##(p_x, p_y, p_z)## to ##(p_x+dp_x, p_y+dp_y, p_z + dp_z)## is $$\frac{2}{h^3} \frac{dp_x dp_y dp_z}{e^{\beta[(p_x^2+p_y^2+p_z^2)/(2m)-E_F]}+1}$$ Use this to set up an integral that gives the rate ##R## at which electrons will escape from a unit area of the surface of the metal. $$R = \int_{??}^\infty dp_z \int_{-\infty}^\infty dp_y\int_{-\infty}^\infty dp_x \rm {\,[\, integrand \,\, left \,\, for \,\, you \, :) \,]}$$
 
  • Like
Likes   Reactions: ergospherical
Cheers. Where does the factor 2 come from? I figured that if the (momentum) phase space volume of a state is ##h^3##, then ##g(E) dE \sim d^3 p / h^3##.

Then I thought about a section of the metal with small surface area ##dA##. In time ##dt##, electrons with velocities between ##v_z## and ##v_z + dv_z## reach the surface if they are within a depth ##v_z dt##, i.e. within a volume ##(p_z/m) dt dA##. There are ##dn (p_z/m) dt dA## such electrons, where ##dn = dn(p_x,p_y,p_z)## is the number density of electrons given above. So the rate of escape per unit area, given the restriction that only ##p_z > \sqrt{2m(E_F + V)}## can escape, is \begin{align*}
R = \frac{2}{h^3 m} \int_{\sqrt{2m(E_F + V)}}^{\infty} dp_z \int_{-\infty}^{\infty} dp_y \int_{-\infty}^{\infty} dp_x \ \frac{p_z}{e^{\beta(p^2/(2m) - E_F)} + 1}
\end{align*}Does that look right to you?
 
Last edited:
ergospherical said:
Cheers. Where does the factor 2 come from? I figured that if the (momentum) phase space volume of a state is ##h^3##, then ##g(E) dE \sim d^3 p / h^3##.
Electron spin allows two electrons to be in each momentum state. This is easy to forget.

ergospherical said:
Then I thought about a section of the metal with small surface area ##dA##. In time ##dt##, electrons with velocities between ##v_z## and ##v_z + dv_z## reach the surface if they are within a depth ##v_z dt##, i.e. within a volume ##(p_z/m) dt dA##. There are ##dn (p_z/m) dt dA## such electrons, where ##dn = dn(p_x,p_y,p_z)## is the number density of electrons given above. So the rate of escape per unit area, given the restriction that only ##p_z > \sqrt{2m(E_F + V)}## can escape, is \begin{align*}
R = \frac{2}{h^3 m} \int_{\sqrt{2m(E_F + V)}}^{\infty} dp_z \int_{-\infty}^{\infty} dp_y \int_{-\infty}^{\infty} dp_x \ \frac{p_z}{e^{\beta(p^2/(2m) - E_F)} + 1}
\end{align*}Does that look right to you?
Yes. Very nice.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K