A Electrostatic interaction inside and outside the source

Click For Summary
The discussion focuses on calculating the electrostatic interaction between an electron and a nucleus, considering the electron's potential presence within the nucleus. The user presents a double integral involving the electron and nuclear coordinates and seeks to simplify the expression for the interaction term, specifically the term ##\frac{1}{|r_e-r_n|}##. A suggested approach involves expanding this term using Legendre polynomials, which allows for a clearer representation of the interaction. The expansion can facilitate further simplification and truncation as needed for practical calculations. The conversation emphasizes the mathematical techniques necessary for handling complex integrals in quantum mechanics.
kelly0303
Messages
573
Reaction score
33
Hello! I want to get the electrostatic interaction (between and electron and a nucleus), while accounting for the fact that the electron can also be inside the nucleus (e.g. in an S##_{1/2}## state). I ended up with this double integral:

$$\int_{r_e=0}^{r_e=\infty}\int_{r_n=0}^{r_n=R}\frac{\rho(r_n)}{|r_e-r_n|}d^3r_ed^3r_n$$

where ##r_e## and ##r_n## are the electron and nuclear coordinates and ##R## is the nuclear radius. Please note that we are not necessarily assuming that the nucleus is a perfect sphere (although it is usually very close to it). How can I expand the ##\frac{1}{|r_e-r_n|}## and get this into a simpler form that I can also truncate as needed? Thank you!
 
Physics news on Phys.org
That function is expanded in Legendre polynomials as
$$\frac{1}{|{\bf r}-{\bf r'}|}=\sum_l\frac{r'^l}{r^{l+1}}P_l(\cos\theta)$$,
with the smaller r in the numerator.
 
Thread 'The rocket equation, one more time'
I already posted a similar thread a while ago, but this time I want to focus exclusively on one single point that is still not clear to me. I just came across this problem again in Modern Classical Mechanics by Helliwell and Sahakian. Their setup is exactly identical to the one that Taylor uses in Classical Mechanics: a rocket has mass m and velocity v at time t. At time ##t+\Delta t## it has (according to the textbooks) velocity ##v + \Delta v## and mass ##m+\Delta m##. Why not ##m -...

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
7
Views
2K
Replies
7
Views
2K