Energy conservation and universe expansion

nomadreid
Gold Member
Messages
1,748
Reaction score
243
I am sure this question comes up frequently in the forum, and I have read a number of answers to it in different places; namely, that since the expansion of the universe stretches the wavelengths and thereby lowers the energy of light, what happens to the principle of the conservation of Energy? From the answers I have read, it seems that the answer is that Energy is not conserved, as it doesn't obey Noether's Theorem, but that a combination of Energy and stress tensors is what ends up being conserved. However, I doubtful whether this is a good statement of the proper answer. Could someone give me, in relatively straightforward terms (no pun intended), the answer to this question?
 
Physics news on Phys.org
GR Answer: Since the FRW metric does not possesses a timelike Killing vector, there is no conserved quantity that we can call energy. However, GR automatically enforces local energy conservation, since \nabla_{\mu}T^{\mu\nu}=0, where T is the stress tensor, is always true.

Newtonian Answer: Photons lose energy as the universe expands, however, PdV work must be done to expand the universe. These two factors exactly cancel out.
 
Thank you, DaleSpam and nicksauce. I went to the link recommended by DaleSpam, and found the response of nicksauce quite helpful; I shall now pursue these leads. (After posting my original question, I also came across nicksauce's reply in previous posts in the Forum. I must admit that I should have looked through the Forum better before posting.)

This brings me to a related question. On many sites I read the explanation of the possibility of spacetime being flat locally and curved globally by the analogy of "the Earth appears flat when one is small and close to its surface, whereas it appears curved when one is further away or large enough." I find this analogy extremely suspect: after all, when one is close to its surface it will appear, with sufficient measuring instruments, as curved, even though only very lightly curved. From what I understand of curvature, the difference of curvature is not of quantity, but rather of quality. Does someone have a better explanation of the difference?
 
nomadreid said:
On many sites I read the explanation of the possibility of spacetime being flat locally and curved globally by the analogy of "the Earth appears flat when one is small and close to its surface, whereas it appears curved when one is further away or large enough." I find this analogy extremely suspect: after all, when one is close to its surface it will appear, with sufficient measuring instruments, as curved, even though only very lightly curved. From what I understand of curvature, the difference of curvature is not of quantity, but rather of quality. Does someone have a better explanation of the difference?
You are exactly correct and have instinctively identified the very heart of the matter. When you are talking about space being "locally flat" how "local" you have to go depends on the accuracy of your measuring instruments.

Experimentally, local flatness means that for any given measuring device with a finite precision, e, you can always find a sufficiently small region of spacetime around any given event such that the error introduced by the curvature will be less than e.

Mathematically, local flatness means that at any given event you can always transform to a coordinate system which approximates a flat coordinate system to first order and that any deviations are second order or higher.
 
Thank you, DaleSpam. These definitions are very useful.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Back
Top