- #1
C. Darwin
- 18
- 0
Homework Statement
A cylinder with mass [itex]m[/itex] and radius [itex]a[/itex] rolls down a fixed cylinder with radius [itex]b[/itex]. Let [itex]\theta[/itex] be the angle between the plane containing the axis of each cylinder and the vertical. Find the normal component of the reaction force exerted on the rolling cylinder.
Homework Equations
The Attempt at a Solution
[tex]T = \frac{1}{2} m v^2 + \frac{1}{2}I\omega^2 = \frac{1}{2} m (R\dot{\theta})^2 + \frac{1}{2}(\frac{1}{2}ma^2)(\frac{b}{a}\dot{\theta})^2 = m[\frac{1}{2}(a+b)^2 + \frac{1}{4}b^2]\dot{\theta}^2[/tex][tex]V = mgh = mgRcos(\theta) = mg(a+b)cos(\theta)[/tex]
[tex] E = T + V \Rightarrow mg(a+b) = m[\frac{1}{2}(a+b)^2+\frac{1}{4}b^2}]\dot{\theta}^2 + mg(a+b)cos(\theta)[/tex]
[tex]\Rightarrow \dot{\theta}^2 = \frac{g(a+b)}{\frac{1}{2}(a+b)^2 + \frac{1}{4}b^2}(1-cos(\theta))[/tex]
Now here's where I'm not so sure (although my statements of energy may be off):
[tex] F_N = mgcos(\theta) - m\frac{v^2}{r} = mgcos(\theta) - mr\dot{\theta}^2 =mgcos(\theta) - m(a+b)\dot{\theta}^2[/tex]
[tex] F_N = mg[cos(\theta) - \frac{(a+b)^2}{\frac{1}{2}(a+b)^2 + \frac{1}{4}b^2}(1-cos(\theta))] [/tex]
I'm lost at this point, I think my statements for T and V are correct because I arrived at the same [tex]\ddot{\theta}[/tex] from both the energy analysis and the Langrangian.
According to the book, the answer is: [tex] F_N = mg(7cos(\theta) - 4)/3[/tex]
Thanks in advance.
Last edited: